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Abstract—Minimization of drive test (MDT) allows coverage to
be estimated at the base station using user equipment measure-
ment reports with the objective of eliminating the need for drive
tests. In this letter, we quantify various types of errors in MDT-
based autonomous coverage estimation that stem from inaccurate
user positioning, for example, as a result of GPS measurement
uncertainties and quantization due to dividing the coverage area
into bins. By investigating the interplay between quantization and
positioning error to estimate coverage, we show that there exists
an optimal bin width for coverage estimation and determine it as
a function of positioning error and user density. This can enable
network operators to configure the bin size for given positioning
accuracy that results in the most accurate MDT based coverage
estimation.

Index Terms—Minimization of drive test, positioning error,
optimal bin width, autonomous coverage estimation

I. INTRODUCTION

Network automation or self-organisation enables the net-
work to detect changes, such as detection of coverage holes,
weak coverage, performance degradation problems and then
based on these detected changes, make timely decisions [1].
In conventional cellular networks, cell outage detection mecha-
nisms incur inevitable delay and unreliability that stems from
human error and low spatio-temporal granularity of reports
gathered via drive tests [2]. This problem is likely to aggravate
with the advent of emerging small cells, where the probability
of cell outages is expected to increase further.

To overcome the aforementioned challenges, 3GPP has
standardized a self-organizing network use case, called min-
imization of drive test (MDT), which exploits the measure-
ment reports gathered by the user equipment (UE). The
UE measurement reports are tagged with their geographical
location information, sent to their serving base station (BS)
and ultimately used to generate coverage maps [2]-[4]. While
far more efficient than drive tests, any MDT based solution
for coverage estimation has to overcome following two major
errors:

1) Positioning error: The reported geographical coordinates
of the UE obtained from any positioning technique, such
as assisted global positioning system are susceptible to
errors, resulting in the reports being tagged to a wrong
location [5]. These locations can also be inaccurate for
the purpose of preserving user privacy.

2) Quantization error: Storing all MDT reports from all
users is computationally inefficient and leads to unneces-
sary wastage of valuable memory resources. Therefore,
the coverage area is often divided into bins and the
average received power from each bin is stored and used

to build coverage maps. This results in quantization error
due to averaging.

Authors in [2]-[6] aim to address the reliability of MDT-
based coverage estimation in the presence of positioning er-
rors. However, these studies do not take into account the errors
resulting from quantization. Quantization error to estimate cell
radius is discussed in [7]. However, the work in [7] does
not use MDT-based approach. Authors in [8] use regression
clustering for construction of RSRP maps from a sparse
set of MDT measurements. However, this work [8] assumes
perfect user locations and a fixed bin width or grid size.
Authors in [9] propose a MDT system in which UEs upload
the measurement reports periodically. Based on the collected
measurement reports, the MDT system learns the knowledge
about the communication environment and use it to forecast
signal strengths. However, authors in this work [9] generate the
forecast of signal strength given the locations of base stations
and UEs are known. Therefore, current studies on MDT-based
coverage estimation either assume perfect user locations and
no quantization, or consider the effect of positioning and
quantization errors independent of each other.

In this letter, we analyze the interplay between the afore-
mentioned errors concurrently in coverage estimation through
MDT. While on one hand, decreasing bin size reduces the
quantization error, on the other hand, it increases the error
in coverage estimation due to incorrect user positioning. This
study is the first to show that there exists an optimal bin width
for given user positioning error that can minimize the overall
error in the MDT based coverage error, i.e., the combined
error caused by quantization (dictated by bin size) and user
positioning inaccuracy. This calls for an optimization of bin
width that would minimize the overall error under positioning
error constraints. To the best of our knowledge, this paper is
the first to analyze and quantify the interplay between these
errors simultaneously and present a framework to determine
the optimal bin width that minimizes these errors concurrently.

II. SYSTEM MODEL

We consider a system of N base stations uniformly dis-
tributed in an area of A × A, where A is the length in
meters. Each base station serves users located in an area of
am × am. Users are distributed according to square point
picking process, i.e., two independent sets of points x and
y are picked from a uniform distribution and placed at coor-
dinates (x, y). The area served by each base station is further
divided into m × m bins of width w. We assume that the
probability density function of the distance and direction of
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Fig. 1: A portion of the coverage area showing bin width (w) and
positioning error radius (u).

the UEs actual location with respect to its reported position
are 1

u and 1
2π respectively. Therefore, given a reported UE

position, its actual location is within a circular disc with
radius u which is centered at the reported UE position, as
illustrated in Fig. 1 for one user. Therefore, the actual position
of the ith UE with coordinates (xi, yi) can be modeled as
(xi + u

√
qi cos(2πvi), yi + u

√
qi sin(2πvi)), where vi and qi

are one realization of pseudo random, pseudo independent
numbers uniformly distributed in [0, 1].

We consider a small cell environment where propagation
conditions are mostly dominated by line of sight. Since MDT
measurement reports are based on long term averaged received
power [5], fast fading can be considered to be averaged out.
Therefore, only the shadowing and path loss effects are taken
into consideration in our analysis. The signal propagation
model we employ for obtaining the received power measure-
ment is as follows:

S [dBm] = T +K − 10 n log10

(
d

do

)
+X (1)

where T is the transmit power in dBm, K is a con-
stant in dB that depends on the antenna characteristics and
the average channel attenuation and can be quantified as
−20 log10 (4πdo/λ). n refers to the path loss exponent, do
is the reference distance and d is the distance between the
user and serving BS. The shadowing effect is modeled by
the random variable, X which follows a zero mean Gaussian
distribution with standard deviation φ in dB. A bin or user is
considered to be in coverage when its received signal strength
is greater than a predefined threshold, γ.

III. AUTONOMOUS COVERAGE ESTIMATION FRAMEWORK
IN THE PRESENCE OF ERRORS

A. Quantifying user positioning and quantization errors

In this section, we first present insights and methods to
quantify the individual effects of user positioning and quanti-
zation errors in coverage estimation, followed by quantification
of the concurrent effect of these errors in order to determine
the optimal bin width.

1) User positioning error in the presence of bins: Consider
the scenario in which the predicted coverage area is divided
into m×m bins. Gathered coverage data from different bins
can be represented in a matrix R of dimensions m×m. Thus,
the coverage area forms a square matrix, R ∈ R(m×m), where
each entry of this matrix, ri contains the averaged received
power in that bin, where i = 1, ...m2. Therefore, RP,Q is a
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Fig. 2: Probability of misclassification of a user with varying bin
width and positioning error radius.

matrix containing measured average received power of users
due to positioning uncertainty and RP ′,Q contains the average
received power of users with no positioning uncertainty.

To understand the impact of user positioning error as a
function of bin width, consider a user located at the bin center,
with coordinates (12.5,12.5) as shown in Fig.1. In the presence
of no positioning uncertainty, the user is actually present at this
location. However, due to positioning uncertainty, the actual
location of the user lies within a circular radius u. Depending
on the radius u and bin width, w, the probability of user
being actually located in adjacent bins would vary, which
would impact coverage estimation. We define this probability
of misclassification, Pm as the probability that user’s actual
position lies in bin j, given that its reported position lies in
bin i, where i 6= j. Using geometry from Fig.1, three cases
of Pm can be distinguished depending on u. By expressing
θ = 2 cos−1(w/2u) and calculating the fraction of area of
circle with radius u that lies outside the square with side w,
or equivalently, calculating the fraction of user’s all possible
actual locations that lie outside bin i, Pm when a user is located
at the i-th bin center can be derived as follows:

Pm(w, u) =
0, 0 < u ≤ w/2
4u2 cos−1( w

2u )−2u2 sin(2 cos−1( w
2u ))

πu2 , w/2 < u < w/
√
2

πu2−w2

πu2 , u ≥ w/
√
2

(2)

Pm as a function of u and w is illustrated in Fig. 2. Note that
the case when a user is located at the bin center is a lower
bound on Pm as Pm will increase as the user moves away
from the bin center. Therefore, for any arbitrary user location,
the error in coverage estimation due to positioning error in
the presence of bins is likely to increase with larger u for the
same w or with smaller w for the same u, as the probability
of misclassification would increase in these scenarios. It is
observed from Fig. 2 that a zero probability of user location
being misclassified occurs at the combination of large bin
width and small positioning error radius. Note that the RSRP
perceived by the users is affected by positioning error since
the measured RSRP reports are tagged to wrong locations due
to positioning error. This results into error (caused by tagging
to wrong location) in the RSRP-location duo reported as part
of the MDT reports. This leads to error in the coverage being
investigated here. Therefore, the error in coverage estimation
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due to positioning uncertainty is expected to be the least when
bin width is large and positioning error radius is small. In
order to capture this effect, we quantify the impact of user
positioning error in the presence of bins as follows:

EP =
1

m2

m2∑
i=1

|P[rP,Qi > γ]− P[rP
′,Q

i > γ]| (3)

where the operator P represents probability, rP,Q and rP
′,Q

are vectorized forms of matrices RP,Q and RP ′,Q respectively.
The i-th element of the vector rP,Q, rP,Qi represents the
measured average received power of users in i-th bin in
presence of positioning uncertainty and rP

′,Q
i is the average

received power of users in the same bin with no uncertainty.
2) Quantization error in the presence of positioning uncer-

tainty: In order to quantify the effect of quantization error
as a function of positioning error radius, u, it is necessary to
analyze the coverage values at the user level for benchmark
to investigate the effect of binning. Let rP,Q be the measured
received power vector of U users within a cell in the presence
of quantization and positioning error and rP,Q

′
be measured

received power vector of those U users without any quanti-
zation but the same positioning error. Then the error due to
quantization in the presence of a certain positioning error can
be quantified as:

EQ =
1

U

U∑
i=1

|P[rP,Qi > γ]− P[rP,Q
′

i > γ]| (4)

3) Combined effect of quantization and positioning error:
Finally, to quantify the effect of both positioning error and
quantization error on coverage estimation, we consider the
benchmark to be the received power vector at the user level
without any positioning uncertainty (i.e., the user reporting
RSRP value from a particular location is actually present
at that location), rP

′,Q′ . Then the combined effect of both
positioning and quantization errors on coverage estimation can
be quantified as:

EP,Q =
1

U

U∑
i=1

|P[rP,Qi > γ]− P[rP
′,Q′

i > γ]| (5)

B. Determining optimal bin width

In order to determine the optimal bin width, we want to
minimize the total quantization and positioning error. The
optimization problem can then be formulated as:

w∗ = arg min
w

EP,Q (6)

subject to wmin ≤ w ≤ wmax
GPS error radius = u

where the expectation is taken over random variables, x, y, v, q
and X . Owing to the small search space, we can solve (6)-
(III-B) via brute force as shown in the next section.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, we distribute U users/cell in a system of
9 cells according to square point picking process. The actual
position of the ith UE with coordinates (xi, yi) is generated
as (xi + r

√
qi cos(2πvi), yi + r

√
qi sin(2πvi)), where vi and
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(a) EQ and EP , u = 5m
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(b) EP,Q,u = 5m
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(c) EQ and EP , u = 40m
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(d) EP,Q, u = 40m
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(e) EQ and EP , u = 70m
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Fig. 3: Errors in coverage estimation for different positioning error
radius and γ = −80dBm.

qi are drawn from a uniform random distribution, U [0, 1]. We
consider three different user densities, U = 3000, 5000 and
7000. Other simulations parameters are set as follows: n =
3.5, do = 1m, T = 40 dBm, φ = 4dB, N = 9, A = 1200m,
a = 400m, wmin = 10m, wmax = 55m and u is varied from
0m to 70m. Monte-carlo simulations are done over the random
variables, x, y, v, q and X .

The error in coverage estimation due to quantization error
and incorrect user positioning is shown in Fig. 3 (a), (c), (e) for
u = 5m, 40m and 70m respectively. On one hand, the coverage
estimation error due to quantization increases with increase
in bin width owing to greater averaging of user reported
measurements as bin width increases. On the contrary, error
due to incorrect user positioning decreases with increase in bin
with attributing to the fact that for a given positioning error
radius, a larger bin width would mean a lesser probability that
a particular user is in fact present in adjacent bins as previously
illustrated by Fig.2. This trade-off leads to the curves in Fig. 3
(b), (d) and (f). Note that the coverage estimation error due to
positioning error is very small in case of u = 5m as compared
to the quantization error, therefore, the total error in Fig. 3(b)
for u = 5m is dominated by the quantization error. However,
as positioning error increases, it acts as an opposing factor
to the increasing quantization error with increasing bin width,
yielding an optimal bin width as shown in Fig. 3 (d) and (f).

A 3D graph showing the effect of both errors simultaneously
as a function of positioning error radius and bin width is
shown is Fig. 4. It is observed that the optimal bin width
that minimizes this error increases as positioning error radius
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Fig. 5: Total coverage estimation error with varying user densities
for u = 70m, γ = −80dBm.

increases. The analysis is extended to different user densities.
Fig. 5 shows the total error in coverage estimation with varying
user densities for u = 70m. It can be seen that as the user
density increases, the optimal bin width decreases attributing
to the decrease in effect of coverage estimation error caused
by positioning inaccuracy. This is because the average of users
in any bin is likely to differentiate by a small margin when
number of users in that bin are more as compared to the
scenario with less number of users.

The resulting optimal bin width as a function of positioning
error radius is shown in Fig. 6 for different user densities. It is
observed that the optimal bin width increases as positioning er-
ror radius increases in a non-linear manner. Note that although
the overall coverage estimation error increases with increase
in positioning error radius, the optimal bin width may be same
for certain ranges of positioning error radii. This is because
despite increase in EP,Q with increase in u, the bin width
which results in minimum EP,Q is same for those positioning
error radii. These findings can be used by a network operator
to determine the optimal bin width for a given positioning
accuracy and user density, that would result in minimum error
in MDT-based coverage estimation. This would lead to more
accurate coverage estimation, which can then be utilized to
design and optimize several aspects of the network, such as
minimize total cost of ownership, boost network capacity,
detect coverage holes, maximize coverage, minimize power
consumption and even optimize handover zones [10].

V. CONCLUSION

By quantifying the errors in MDT-based coverage estima-
tion that stem from quantization and inaccurate user position-
ing, we show that there exists an optimal bin width that can
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Fig. 6: Optimal bin width with varying positioning error radius.

be determined to minimize the combined effect of these errors
in MDT based coverage estimation. Optimal bin width that
minimizes the effect of these errors concurrently is determined
as a function of positioning error radius and user density.
Thus, for for given positioning accuracy and user density,
the findings from this study can be directly used by network
operators to configure the bin size that results in most accurate
MDT based coverage estimation. Depending on the scenario
under consideration, framework presented in this study can be
extended to varying base station distributions and shadowing
standard deviations. Such investigations will be focus of our
future work.
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