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Abstract —Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy
consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a
novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The
proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong
spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio
resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This
scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of
linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment
designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns,
2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on
approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better QoS.

Index Terms —5G, Heterogeneous Networks, Small Cells, Energy Efficiency, Inter-cell Interference, Resource Allocation, Binary
Integer Linear Programming, CDRs, Big Data Analytics.
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1 INTRODUCTION

1.1 Background

It is envisaged that network densification, a dominant theme
in 5G, is going to play a key role in coping with the explosive
mobile traffic growth. Co-channel small cells (SCs) i.e., SCs
reusing the same spectrum as macro cells (MCs), are a
preferred mode of densification since the spectrum is an
expensive and scarce resource. However, reusing the spec-
trum amongst the MCs and SCs increases ICI which, if left
un-managed, may significantly deteriorate overall network
performance [1]. Besides the ICI problem, low energy effi-
ciency (EE) is another major problem in HetNets. Although
SCs have a relatively lower power consumption profile,
one of the major concerns in the future dense deployments
is the high aggregated energy consumption. As recently
demonstrated through SC and MC power consumption
models developed in Earth project [2], always ON cells based
approach particulary increases energy inefficiency in the
network when SCs are introduced. This is because, com-
pared to MCs, the load independent power consumption
(circuit power) component in SCs constitutes a much larger
portion of over all power consumption. Therefore, a vision
for an ultra-dense network cannot become a reality without
addressing the two time-persistent challenges: higher ICI

and higher aggregated overall energy consumption stem-
ming from the classical always ON routine. In our study,
we have proposed a pro-active approach that can simulta-
neously minimize the energy consumption as well as the ICI
in emerging ultra-dense networks. This is in contrast to the
state-of-the art, that is predominantly reactive rather than
proactive. Specifically, the proposed work exploits deluge of
largely untapped Call Data Records (CDRs) data to analyze
and predict the spatio-temporal user activity behavior. This
intelligence is then utilized to dynamically optimize the
operational states of the SC (i.e., active, partially muted,
or sleep mode), to divert and focus the right amount of
resources, when and where needed, while simultaneously
minimizing ICI and energy consumption. To the best of
author’s knowledge, this the first study to provide a detailed
analysis of real CDR data and demonstrate its potential for
developing a proactive energy saving mechanism.

Due to their importance, ICI mitigation and EE enhance-
ment problems have been widely studied in the literature,
initially targeting homogeneous MC only scenarios e.g., [1],
[3]–[9]. However, the EE or ICI solution proposed for MCs
cannot be directly used for HetNets because of underlying
differences in the power consumption models of SC and
MC and the interference dynamics. For example, one reason
for this inapplicability is that the dominant interferes for a
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user in the MC only network are limited and usually not as
strong as in the dense HetNet scenario, where a SC can be
very close to a MC user situated far from the serving MC.

Focusing on the HetNets scenarios, the authors in [10],
[11] propose techniques to address SC-to-SC interference.
Although SC-to-SC interference is a notable aspect in Het-
Nets scenario, the degradation of performance for MC users
due to the interference from SCs is more critical than the
interference experienced by SC users; since there are fewer
users served by SCs as compared to MC, SC served users are
anyway allocated with more bandwidth resources. Hence,
operators have a conflict between achieving commitments
towards the MC users and maximizing network efficiency
by relying heavily on SCs. To address this challenge, authors
in [12]–[14] propose solutions to address interference caused
by SCs to MC users.

Another line of ICI studies resorts to the spectrum parti-
tioning between cell-center and cell-edge users for instance,
as proposed by authors in [15]–[23]. However these ap-
proaches mitigate ICI by reducing overall capacity because
of spectrum partitioning.

For joint ICI management and EE in HetNets, the studies
in [24]–[29] focus on the improvement of EE through ICI
mitigation rather than directly reducing the energy con-
sumption by turning off the cells. Although ICI mitigation is
a reasonable approach since it reduces the energy consump-
tion for a given system throughput target, however, EE of
the cellular systems can be further enhanced significantly
through traffic-aware transmission strategies as proposed
in [30]–[33], where under-utilized BSs are recommended
to switch to sleep mode or can be turned off during off-
peak time of traffic loads. The sleeping strategies proposed
in these works are recognized as promising approaches to
improve the EE of the cellular system. However, the sleep
mode strategies proposed in [30]–[33], have not been con-
sidered in conjunction with aforementioned ICI-mitigation.

Studies in [34]–[36] on the other hand investigate EE
in conjunction with ICI, albeit, for uplink transmission and
therefore focus on UEs EE. In contrast to these studies, our
work focuses on EE in the downlink which is the dominant
energy consumption factor (and the main contributor to an
operators running costs - OPEX) in cellular networks.

Furthermore, the above approaches for mitigating ICI
and enhancing EE in HetNets, may not meet the ambitious
5G QoS and resource efficiency requirements because of
their intrinsically reactive (reacting to the changes in traffic
etc, after they have occurred) design approach. Contrary to
prior studies, this paper provides a fundamentally different
approach, i.e., a proactive approach, that builds on the lines
of Big Data empowered Self Organizing Network (BSON)
vision presented for 5G in [37] leveraging CDRs to simulta-
neously minimize energy consumption and ICI in emerging
ultra-dense networks. Several studies have demonstrated
the usefulness of using real-world CDRs data in the mobile
network analysis and planning in comparison to analytical
approaches [38], [39]. The authors in [38] have performed
a spatio-temporal analysis of CDRs data collected from
various base stations in China. It has been concluded that
call arrival patterns vary over time and locations and Pois-
son distribution model over 1 hour interval is inaccurate
and it has been pointed out that advance machine learning

Fig. 1: Calling activity for POI versus Non-POI cells for 24
hours on 7th Dec 2013

algorithms can help model the phenomena more precisely.
Moreover in [39], the authors demonstrate that using real
world CDR data for mobile network and planning can
learn the insights that are not captured by smaller-scale or
synthetic datasets. To the best of authors’ knowledge, no
other work has exploited real CDR traces in the scheduling
small cell sleep cycles as we have done in this paper.

1.2 Leveraging the Intelligence Extractable from CDRs
for Designing Proactive ICI–EE Solution

Our study has analyzed large scale network data collected
from Milan City [40], provided by Telecom Italia as part
of their big data challenge [40]. We have performed large
scale data processing and data analytics over 10 million
real network CDRs and subsequently inferred a clear pre-
dictable pattern in the spatio temporal behaviour of the
network traffic. Representative results from this analysis are
illustrated in Figures 1-4. Fig. 1 shows the measurements
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Fig. 2: Internet Activity level for non-POI (npoi) and POI
cells

of the aggregate real traffic load over the course of one
day for cells that contain a subset of popular destinations
referred to as Point Of Interest (POI) versus cells that are in
residential environment referred to as non-point of interest
(non-POI) coverage cells. It is evident that calling activity
has a pattern for both POI and non-POI. For both, traffic
is relatively high between 8AM till 11PM. During the quite
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Fig. 3: Calling and Internet activity (week 1st Dec 2013- 7th
Dec 2013)

(a) Morning (b) Afternoon

(c) Evening

Fig. 4: Activity level map for a) Morning b) Afternoon c)
Evening

hours of the day (between midnight and 6am), both non-
POI and POI cells have similar low activity levels. For the
case of mobile data usage similar pattern can be observed
in Fig. 2 that shows the activity levels for morning, midday
and evening times. For the early morning case, majority of
the cells are classified into the category of low and very
low activity levels. Therefore, at certain extreme (low traffic)
conditions, network utilization can become low and SCs
deployed there can remain under-utilized either due to very
limited existing load or may have to be muted when causing
high interference to MC users.

Fig. 3 shows the calling and internet-usage activity pat-
tern for the whole week that exhibits a distinct periodic
predictive nature with internet activity relatively very high
as compared to the calling activity. Similarly, the heat map of
this activity level is shown in Fig. 4 wherein it is observed

that the temporal variation of the traffic load has a strong
relationship with time and the geographical location.

As inferred from our exploratory data analysis, the
under-utilization of network at specific times, the clear peri-
odicity in spatio temporal activity of the network provides
us a clear opportunity to exploit it for energy savings as well
as joint ICI mitigation. Building upon it, we subsequently
devised a proactive sleep mode schedule strategy for SCs. A
SC node, other than the active (i.e. fully operational) mode,
can be in idle or sleep mode. Since generally there are fewer
users served by SCs, many SCs are not utilized most of
the time and the idle mode energy gets wasted; switching
the node to sleep mode can significantly reduce the energy
consumption. Considering the expected heavy deployment
of SCs in the near future and the dynamic traffic demands,
sleep modes pose a very promising solution to overcome
the wastage of energy in case of low SC utilization.

While it is well-known and intuitive fact that traffic
becomes heavy during day and light during night, following
questions remain to be investigated:

1) Can CDR data, (instead of load indicators at base
station level as other studies have used) be mined to
extract meaningful traffic pattern?

2) If a minable traffic pattern exists in CDR data, what ma-
chine learning techniques can produce accurate traffic
prediction models?

3) What is the accuracy of such prediction model?
4) Do factors such as presence of POI affect the traffic

pattern?

Several studies on energy efficiency exist that refer to exis-
tence of day and night pattern in qualitative sense using it
as a motivation to propose an ON/OFF schemes. However,
this study for the first time provides a comprehensive quan-
titative analysis of the real CDR data. We mine traffic pattern
using real data to propose and analyze a proactive, (not
cyclic or reactive) ON/OFF scheme. Furthermore, we com-
prehensively analyze the performance of that scheme using
a heterogeneous deployment model that takes into account
the specific traffic pattern observed in the area where the
real data was collected. This is done by placing small cells
at points that were determined to be POI as outcome of the
CDR data analysis. Therefore, another contribution of this
work is the analysis of effect of POIs on the traffic pattern.
The presence of POIs changes the periodicity pattern of the
mobile network traffic and our results provides new insight
on how the presence of POIs effects the energy saving
potential.

1.3 Contributions and Paper Organization

The contributions and organization of paper can be sum-
marised as follows:

1) Using a realistic HetNet system model, we mathe-
matically formulate the joint optimization problem for
minimizing the ICI and energy consumption for the
predicted traffic scenario (Section 2).

2) We propose an algorithm that exploits the base sta-
tion sleep-mode mechanism in conjunction with the
resource allocation as the optimization control vari-
ables. We then propose a heuristic low complexity
solution to solve this NP-hard problem. Our proposed
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energy consumption aware (ECA) resource allocation
scheme addresses the limitation of fixed time-based
sleep scheduling mechanism [41] that fails to adapt to
dynamic and unusual activity, since they are manually
configured for a statistical traffic cycle, usually during
few hours of night when user traffic is very low (Section
3).

3) We leverage the results of our big data analysis on
Milan CDRs data to propose a HetNet deployment
scenario and evaluate the performance of the proposed
ECA scheme in the proposed HetNet deployment sce-
nario, where traffic generation pattern is derived from
the real data. The results indicate that with ECA the
energy consumption could be reduced to 1/8th in a
dense heterogeneous network deployed in a typical
urban city (Section 4).

4) We further compare the proposed ECA solution with
the frequency reuse-1 scheme, through system level
simulations in NS-3. Our deterministic-load based sim-
ulation results clearly indicate that nearly all MC users
were protected from neighboring SC interference in
comparison to Reuse-1 case wherein 20% users face
outage. Moreover, during low traffic conditions, up to
23% saving in the total network power consumption
can be achieved using ECA by putting under-utilized
SCs in sleep mode (Section 5).

5) We compare the complexity analysis in terms of num-
ber of iterations between the state-of-the-art and ECA
scheme that highlights the lower complexity and there-
fore, higher the practicality of the ECA scheme (Section
5).

2 SYSTEM MODEL & PROBLEM FORMULATION

We consider a system of M + 1 cells, as depicted in Fig. 5,
comprising one MC (identified as cell 0) and M SCs within
the MC area. The set of SCs is defined as M = {1, . . . ,M}.
We assume that there are K active users in the system. We
consider that each user can have only one serving node,
but each cell can support multiple users; thus, K , |K| =
|K0 ∪ K1 ∙ ∙ ∙ ∪ KM |, where K denotes the set of all users in
the system and Km denotes the set of users served by cell
m.

The total system bandwidth is divided in N resource
blocks (RBs) and each RB can be allocated to only one
user in each cell. MC can allocate all the available RBs
to its associated macro-users (MUE). Moreover, MUEs are
assumed to have minimum data rate requirements. On the
other hand, SCc reuse the same resources to serve their small
cell-users (SUE) based on a resource allocation policy. We
consider a central entity residing at the MC which is able
to collect relevant information to make resource allocation
decisions and guide SCs on the resource allocation policy to
be adopted.

We define binary indicator variables φk,m,n ∈ {0, 1},
where φk,m,n = 1 when SC m serves its kth assigned user us-
ing the nth RB; otherwise, the RB allocation parameters take
the zero value. Thus, we can define the vector containing
all RB allocation parameters φ = [φ1,1,1 . . . φK,M,N ], which
characterizes the SCs’ RB allocation policy. We also define
the binary cell ON/OFF state indicator ψm ∈ {0, 1}, where

Fig. 5: System Model.

ψm = 1 indicates the active state of cell m; otherwise, in
OFF state it take the zero value. Moreover, transmit power
of the mth SC in the nth RB is denoted by pm,n ≤ Pmax,
where Pmax is the maximum allowed transmission power
of any small cell. Vector p = [p1,1 . . . pM,N ] characterizes
the SC power allocation policy.

2.1 User SINR and Rate Modelling

The SINR of the uth MUE at RB n in cell 0 (macrocell) can
be given by:

γu,0,n =
p0,nΓ0

u,0,n

M∑

m=1

(
∑

k∈Km

φk,m,n

)

pm,nΓm
u,0,n + N0B

, (1)

where p0,n denotes the transmit power of macrocell at RB n,
Γi

k,m,n is the channel gain between cell i and user k being
served at cell m in RB n, N0 is the noise power spectral
density and B is the bandwidth of each RB.

Similarly, the SINR of SUE k in cell m at RB n can be
given by:

γk,m,n =
pm,nΓm

k,m,n

p0,nΓ0
k,m,n +

M∑

i=1
i 6=m

(
∑

l∈Ki

φl,i,n

)

pi,nΓi
k,m,n + N0B

.

(2)
The rate (in bit/sec) of each user (SUE or MUE) can be

expressed by the Shannon-Hartley theorem as follows:

Rk,m,n = B log2 (1 + γk,m,n) . (3)

It should be noted that although (3) does not provide a
practically achievable rate, it serves as a good estimate of a
performance indicator for comparison purposes.

2.2 Maximum Interference Allowance

Given the set of RBs (Nk RBs) allocated to kth MUE in
mth macro cell by the scheduling scheme employed in
the system (e.g., Round Robbin, Proportional Fair etc.,),
minimum overall data rate demand for that MUE (Rreq

k,m)
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can be translated into a minimum data rate demand at each
of the RBs allocated to that MUE (

Rreq
k,m

Nk
). This further can

be translated into a specific minimum required γreq
u,0,n SINR

value [42] as:

Rreq
k,m,n = BR(r).[1 − BLER(r, γreq

u,0,n)] (4)

where BR is the theoretical bit rate for any modulation and
coding scheme (MCS) r when there are no errors. BLER
denotes the block error rate suffered by this user on RB n
which is a function of the realized SINR and the MCS used.
Having identified the minimum SINR value and consider-
ing (1) we can find the maximum interference power Ωmax

u,n

that MUE u can tolerate in RB n from all SCs to obtain this
rate threshold:

Ωmax
u,n =

p0,nΓ0
u,0,n

γ
req
u,0,n

− N0B. (5)

If the potential channel gain from any SC m to the MUE
is denoted as Γm

0,u,n, the total interference caused to it by all
SCs in each RB can be given by:

Ωsum
n =

M∑

m=1

(
∑

k∈Km

φk,m,n

)

pm,nΓm
u,0,n

=
M∑

m=1

(
∑

k∈Km

φk,m,n

)

ωm
u,0,n,

(6)

where ωm
u,0,n , pm,nΓm

u,0,n can be interpreted as the inter-
ference that is caused to user u in cell 0 (MC) on RB n from
SC m.

2.3 Network Power Optimisation

The total instantaneous power of a cell can be given by the
sum of the circuit power and the transmit power as:

P total
m = ψm(P circuit

m + Δm.P transmit
m ) (7)

where P circuit
m is the constant circuit power which is drawn if

transmit node m is active and is significantly reduced if the
node goes into sleep mode. P transmit

m is the node’s transmit
power and Δm denotes the slope of load dependent power
consumption of cell m [2].

The general network power optimisation problem com-
prising the objective function and the imposed constraints
can be formulated as follows:

min
p,φ,ψ

M∑

m=0

P total
m (8)

subject to:

φk,m,n ∈ {0, 1} , ∀k ∈ K \ K0,m ∈ M, n; (9a)
∑

k∈Km

φk,m,n ∈ {0, 1} , ∀m ∈ M, n; (9b)

Ωsum
n ≤ Ωmax

n , ∀n; (9c)

ψm ∈ {0, 1} ,m ∈ M, n; (9d)

ψ0 = 1; (9e)

Rk,m ≥ Rmin
k,m , ∀m 6= 0; (9f)

N∑

n=1

(
∑

k∈Km

φk,m,n

)

pm,n ≤ Pmax, ∀m ∈ M; (9g)

pm,n ≥ 0, ∀m ∈ M, n. (9h)

Constraint (9b) indicates that RBs are exclusively allocated
to one user within a cell to avoid intra-cell interference;
constraint (9c) denotes the total maximum interference that
a MUE served by MC on RB n can tolerate from all SCs in
the MC area in order to satisfy its minimum rate needs;
constraint (9d) indicates the ON/OFF state of the cells
and constraint (9e) makes sure that the MC is always in
active state. This constraint ensures coverage reliability. In
case when some SCs are switched OFF by our proposed
proactive sleeping pattern solution, Always ON macro cells
are expected to ensure that minimum coverage threshold is
met all the time. Constraint (9f) is the minimum required
rate constraint for each user; finally, constraints (9g)-(9h)
stand for the maximum and minimum transmission power
constraints at each SC node.

2.4 Energy Efficiency Performance Metrics

Before the proposed algorithm is discussed, it is important
to define the EE performance metrics. EE is simply calcu-
lated as the total number of bits transferred, divided by the
total amount of energy consumed.

EE =
Total data transferred

Total energy consumed
(bit/Joules) (10)

This can also be expressed as Energy Consumption Ratio
(ECR), i.e., the amount of energy consumed to transmit one
bit [43], [44].

ECR =
P

D

( Watt

bit/sec

)
(11)

Where, D = B
T is the data rate in bits per second and

P is the power in Watts required to deliver B bits over
time T . Furthermore, energy efficiency between two systems
can also be expressed by Energy Consumption Gain (ECG),
which is a ratio of ECR for two systems [43], [44].

ECG =
ECRa

ECRb
(12)

Energy savings on the other hand are expressed as Energy
Reduction Gain (ERG) [43], [44].

ERG = (
ECRa − ECRb

ECRa
) × 100% (13)

For comparison of two schemes where the coverage
area does not remain same, Area Power Consumption [45]
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metric is helpful in accessing the power consumption of
the network relative to its size. It is the average power
consumed in a given area divided by the area. This metric
is measured in Watts per square Kilometre.

PArea =
Pav

Ac
(14)

where Pav is the average power consumed and Ac is the
coverage area.

3 ENERGY CONSUMPTION AWARE HEURISTIC RE-
SOURCE ALLOCATION SCHEME (ECA)
The formulated combinatorial optimisation problem in (8)
contains both continuous (p) and binary (φ,ψ) decision
variables. The problem in (8) can be identified as a mixed
integer non-linear programming problem since the con-
straint (9f) i.e., Rk,m is non-linear in p considering equations
(3) and (2). The problem is similar to the classical 0/1
knapsack problem since the user can be scheduled at only
one cell at any given time which is known to be NP-hard
(similar to the one in [46]). Finding the optimal solution to
these non-convex problems in real network with dynami-
cally changing network conditions requires computationally
complex exhaustive search, rendering its implementation
in practical systems impossible. It becomes even harder
when QoS constraints are added on top (as is the case here
with the minimum MUE rate constraints). Consequently,
the complexity is expected to grow exponentially with the
number of cells. Considering that SCs allocate power to RBs
according to some predefined power levels, vector p can
instead contain integer variables. This of course renders the
optimisation problem even harder to solve.

To address the complexity issues we devise a low com-
plexity heuristic solution. The proposed Energy Consump-
tion Aware Resource Allocation Scheme (ECA) heuristically
tries to achieve the objective in (8). Although the proposed
scheme is a sub-optimal solution to problem in (8), the aim
behind this solution is to keep the computational complexity
very low to allow its implementation in practical network.
The flow diagram of the proposed ECA algorithm is pre-
sented in Fig. 6, followed by the pseudocode. In the first
step, the ECA scheme solves the RB allocation problem
using linear binary integer programming. To this end, we
assume all SCc are ON i.e., ψm = 1, ∀m with maximum
transmit power and equal power allocation across RBs, i.e.,
pm,n = Pmax/N for any SC m. With this consideration,
the network power minimization problem is transformed
into a pure binary linear optimisation problem which can
be written as follows:

min
φ

M∑

m=0

P total
m (15)

subject to:

φk,m,n ∈ {0, 1} , ∀k ∈ K \ K0,m ∈ M, n; (16a)
∑

k∈Km

φk,m,n ∈ {0, 1} , ∀m ∈ M, n; (16b)

Ωsum
n ≤ Ωmax

n , ∀n; (16c)

Rk,m ≥ Rmin
k,m , ∀m 6= 0; (16d)

The objective is to guide the SCs with their respective
muting parameter in φn, in order to satisfy the maximum
interference tolerance threshold for the MUEs. This results
in significant reduction of the optimisation problem search
space by considering only RB allocation. This reduces the
complexity and convergence time of the problem; hence, it
can be easily solved after multiple or even every transmis-
sion time interval (TTI) e.g. in LTE networks. Once the SCs
are guided with their muting parameter, the algorithm anal-
yses the possibility of switching off under-utilized SCs. For
this, the MC checks if it has sufficient free resources to ac-
commodate small cell users without hurting its own users. If
that is the case, the under-utilized SCs are switched to sleep
mode. We simplify this process by comparing the number
of available RBs (RBAvail

0 ) at the MC (the RBs which are
not being used to serve MUEs) with a minimum threshold
number of RBs (RBThres

0 ). Now, based on the reported
activity of the SCs, the ON/OFF state problem is solved
in a progressive manner considering the SCs with lowest
utilization at first. Here we consider that a SC may result in
a low utilization if it has very low load (serving few users
with low average data rate requirement/constraint) or if it
has a very high RB muting factor (causing high interference
to MC users). The ON/OFF state solution is passed to the
SCs (SC State Array ψ), and the MC continuously monitors
its performance over a longer time interval e.g. minutes.
If a congestion (C0 = 1) occurs i.e., number of resource
blocks required for all of the MC users previously associated
with any mth sleeping SC i.e.,

∑
k RBReq

k,m exceeds number
of available RBs (RBAvail

0 ) then it starts activating sleeping
SCs prioritizing the ones whose users, that were handed
over to the MC, have hefty average data-rate requirements.

It is necessary to highlight here that for the sake of
conciseness, this work does not address the macro-to-macro
cell interference that becomes particularly easy to man-
age due to presence of X2 interface. The rationale behind
this simplification is that focus of this paper is to study
how much energy can be saved by proactively switching
ON/OFF small cells, given that the macro to macro inter-
ference problem is already solved using one of the existing
methods in literature.

Fig. 6: Flow Diagram for ECA Scheme
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Algorithm 1 Energy Consumption Aware Resource Allo-
cation (ECA)

for n = 1 → N
Initialise : ~φn = ~0
Calculate : Ωmax

n ,ωm
u,0,n,Rk,m,n as in eq. 3, 5 and 6

~φn= bintprog (~Rn, ~ωu,0,n, Ωmax
n )

end
Notify SCs with their respective φm,n.

SC Sleep Mode Phase
Analyse Available n RBs at Macrocell
if RBAvail

0 > RBThres
0

Sort SC utilisation ~U in Ascending order
while RBAvail

0 > RBThres
0

Send sleep mode activation message to SC on
top of ~U .
Update RBAvail

0 , Remove top element from ~U .
end

SC Wake-up Phase
For every SC in sleep mode do:
if
∑

k
RB

Req
k,m > RBAvail

0 OR C0 = 1

Sort
∑

k
RB

Req
k,m in ascending order for all m

while
∑

k
RB

Req
k,m > RBAvail

0 OR C0 = 1
Send wake-up message to SC on top of the list
Update RBAvail

0

end
end

3.1 Practical Implementation of ECA in a Real Network

In this section, we present a high-level description of the
implementation aspects of the ECA algorithm in real SON
enabled LTE HetNets comprising macro and small cells.

• The centralized SON engine can apply Big Data ana-
lytics on the past CDRs to analyze the spatio-temporal
traffic pattern and forecasts the required data rates of
the macro and small cell users in each of the cells.
State of the art Big Data analytics tools from Hadoop
ecosystem like Apache Spark and Apache Mahout can
be leveraged to achieve this objective.

• Minimization of Drive Test (MDT) reports recently
standardised by 3GPP [47] and CQI reports collected
at SON engine can be utilized to determine the user
channel gain on specific RBs. On the basis of these
reports (3) and (4) can be used to estimate the maximum
interference that MUE can tolerate on a certain RB. The
MDT reports of the UEs also contain information rele-
vant to their neighboring cells such as the neighboring
cells reference signal received quality along with the
physical cell ID of the neighboring cell. These respective
MUE reports can be used by the SON engine to estimate
the top neighboring interfering small cells; then, this in-
formation can be used to estimate the total interference
caused to it by all small cells in each RB and formulate
the optimisation constraint (16c).

• Finally, the optimisation process of the suboptimal
problem in (15) is performed at the SON engine using
ECA algorithm. The optimisation function returns the
muting matrix for the small cells which is passed to
the small cells. Furthermore, the sleep mode phase
is utilized to determine and pass on the state array

(ON/OFF) to the small cells. Moreover, in order to
avoid introducing unnecessary control overheads into
the network, muting and state array can only be for-
warded subject to change in the optimisation param-
eters. In that case, small cells can continue to use the
last updated muting and state array matrix until a new
update is passed by the SON engine.

4 RESULTS AND ANALYSIS USING REAL TRAFFIC

TRACES DERIVED FROM CDRS OF MILAN CITY

In this section we present our analysis based on a real
networks traffic data to show there is sufficient predictabil-
ity component that can be exploited for significant energy
savings through the proposed scheme. Later in section 5,
we utilize simulation based deterministic traffic models to
show how the proposed scheme can enhance aggregate
throughput and energy savings.

4.1 Introduction to CDR Data from City of Milan

The data used for this analysis comes from Telecom Italia’s
network, Italy, shared as part of their big data challenge
2015 [40]. In our study, a week’s data (01st Dec 2013 to
07th Dec 2013) is used to analyze user activity trends in
the metropolitan city of Milan. The data made public by
Telecom Italia is in form of CDRs for calling and internet
activity. We translated this data into traffic volumes by
exploiting the big data eco-system, the details of which are
omitted for brevity. As shown in Fig. 4, in the data shared
by Telecom Italia, the city of Milan is divided into several
smaller grids (10,000 square grids). For each grid, a CDR
value corresponding to call and internet activity logged at
10 minutes interval, is made public.

4.2 Heuristic Methodology Augmenting Real Traffic
Traces with Realistic Intuitive Topology

The available data lacks information about the real base sta-
tion deployed within the city. Therefore to achieve the objec-
tives of this analysis, without compromising the generality
of its conclusions, we assume that the calling and internet
activity belongs to a macro-cell and small-cell, respectively.
From this point onward, we refer to them as macro-cell
and small-cell activity levels. The macro-cell is assumed to
cover an area of 225 square meters while each of the grid
is assumed to have one small cell. The calling activity for
each macro-cell (accumulated calling activity for 225 square
grids) is translated into data activity according to the Voice
over LTE (VoLTE) standard. Each call is assumed to be 3
minutes based on the average European calling statistics
[48]. As for the VoLTE standard approximately 300 bits of
data packet is required to be transmitted by the end interface
every 20ms. This brings the data rate for each VoLTE call
to 15Kbps. Based on these details we map the CDR based
activity levels into data rates as shown in figures 1-3 earlier.
It is observed that cells have a wide variation in the range
of activity levels (some small-cells have high activity and
some have very low activity). An obvious reason for this
phenomenon is the number of POIs within each cell (the
popularity of POIs also affects the activity levels of cells).
To capture this aspect of cells with and without POIs, we
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Fig. 7: Points of Interest (POIs) on City of Milan grid

consider two macro-cells as depicted in Fig. 7. The first
macro-cell M1 has no POIs within its coverage area, where
as the second macro-cell M2 has a number of POIs in its
coverage as indicated by blue dots on the grid. In the
discussion forward, we refer M1 and M2 as Non-POI and
POI cells. The plot in Fig. 7 was constructed by plotting
the geographical coordinates of most popular POIs in city
of Milan as determined through information available on
tripadvisor.com [49].

4.3 Simulation Results for Application of ECA Algo-
rithm on CDRs Data

In order to analyze the potential energy savings resulting
from the application of ECA algorithm on real networks
data, sleep mode phase of the ECA algorithm is leveraged in
this section. Note that the interference estimation part of the
ECA algorithm is not utilized in the algorithm evaluation
since the big data available to us does not contain UE
location and thus SINR information. Therefore, we esti-
mated interference using average spectral efficiency. The
objective of this study is to demonstrate that even with
limited information that could be extracted by us from a
real publically available data, a proactive and predictive
instead of reactive or cyclic energy efficiency algorithm can
be developed that can result into significant energy saving
gain. Additional information when incorporated into the
algorithm including user locations and SINR maps etc, can
lead to even better performance in terms of interference
aware energy efficiency.

The results and analysis are presented specific to non-
POI and POI macro-cells and under-laying small-cells as
visualized in Fig. 7. Fig. 8 shows the activity levels of
non-POI and POI macro-cell from Sunday until Saturday,
presented as data rates (Mbps). As previously deduced,
activity levels are high for the POI cell as compared to
the non-POI cell. Another interesting aspect to consider for
these two considered macro-cells is that the activity levels
during the week days are relatively higher as compared to
weekends. Similar activity plots are presented for non-POI
and POI small-cells in Figures 9-10. Since there are up-to
225 small cells, in the non-POI case, activity levels of most
of the small-cells are below 1 Mbps, whereas in case of POI
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Fig. 8: Activity level for NON-POI (red) and POI (blue)
macro-cells
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Fig. 9: Activity level for NON-POI small-cells

small-cells several small cells have an activity level higher
as compared to non-POI cells.

To look into further details, graphs in Figures 11-12 are
plotted to show the activity levels for a single day (hourly
level) with the help of Box and Whisker plots. Each plot
ranges from 9%ile to 91%ile of the values whereas the box
expresses the lower and upper quartile (25% and 75%). Line
dividing the box expresses the median and ′+′ expresses
the mean value. It can be observed that for 06:00 hrs and
18:00 hrs, the mean activity level for non-POI SCs is approx-
imately 0.4 and 0.7 Mbps respectively. Similarly in case of
POI SCs at 06:00 hrs and 18:00 hrs the mean activity levels
are at 1.2 and 2.4 Mbps respectively. This traffic trend jointly
motivates the use of ECA scheme for putting majority of the
low activity small-cells into sleep-mode and serving their
load with the macro-cell.

Sun Mon Tue Wed Thur Fri Sat

2

4

6

8

10

12

14

16

18

20

Sunday 1st Dec (00:00) to Saturday 7th Dec (23:59)

A
ct

iv
ity

 le
ve

l (
M

bp
s)

Fig. 10: Activity level for POI small-cells
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Fig. 11: Activity level for NON-POI small-cells for 24 hrs of
a day. Each plot ranges from 9%ile to 91%ile of the values
where as the box expresses the lower and upper quartile
(25% and 75%). Line dividing the box expresses the median
and ′+′ expresses the mean value.
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Fig. 12: Activity level for POI small-cells for 24 hrs of a day.
Each plot ranges from 9%ile to 91%ile of the values where
as the box expresses the lower and upper quartile (25% and
75%). Line dividing the box expresses the median and ′+′

expresses the mean value.

Utilizing these statistics, state of the art machine learning
algorithms were employed to predict activity levels of the
cells based on past activity levels. 70% of the data set
was employed for training while remaining 30% for testing
phase. The Support Vector Machine based regression out-
performed all other techniques and was able to achieve 97%
prediction accuracy. As discussed in section 1, unlike clas-
sical modelling approaches, our machine learning approach
has been able to quite accurately predict the hourly traffic
pattern (Figure 13) since it takes into account location metric
as well. The predicted activity levels of each of the macro

Fig. 13: Support Vector Regression based Traffic Prediction
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Fig. 14: Number of SCs put to sleep-mode for non-POI (red)
and POI(blue) case for the whole week.
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Fig. 15: Number of SCs put to sleep-mode for non-POI (red)
and POI(blue) case for 24 hours.

and small cells (1 Macro + 225 Small Cells) were translated
to required number of PRBs using: RBreq

m = Rmin
m /wB ∗ S

where wB = 180 KHz is the bandwidth of one RB and S
is the average spectral efficiency taken as 1.6 bps/Hz for
LTE. A bandwidth of 20 MHz is considered wherein each
cell has total of 100 RBs. Based on the availability of the
potential free RBs at the macro cell, ECA algorithm off-
loads small cell users to the macro cell and small cells are
put to sleep mode. The performance of the proposed ECA
algorithm is presented in terms of numbers of SCs put into
sleep mode in Figures 14-15. Out of total of 225 small cells,
ECA algorithms puts up-to 205 non-POI SCs in sleep mode
while the traffic conditions are low for the small-cells as well
as for the macro-cell. For the POI case up to 160 SCs can be
put to sleep mode. However, generally there are far less SCs
put into sleep-mode in case of POI SCs as compared to non-
POI case. It can also be observed that during the peak hours
of traffic load, no (a few in case of non-POI case) SCs are put
to sleep mode. The energy savings possible by putting these
the SCs in sleep mode are reflected in the later plots.

The EE performance of non-POI and POI cells is pre-
sented in Figures 16-17. It is interesting to observe that the
EE performance of the non-POI case is significantly less than
that in case of POI case. Such observed phenomenon can be
explained by referring back to the definition of EE, i.e. the
number of bits per Joule of energy (bits/Joule). Since the
small-cells lie in the circuit power dominant regime (circuit
power consumption is significantly higher as compared to
transmit power consumption) and the circuit power being
constant at all times. It is already established that the data
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Fig. 16: EE (bits/Joule) performance for non-POI cells
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Fig. 17: EE (bits/Joule) performance for POI cells

traffic flow in non-POI cells is lower as compared to POI
cells. So it can be deduced that the non-POI cells are under-
utilized, whereas POI cells have higher utilization, hence
better EE performance. Nevertheless, the important aspect
to observe for these plots is that the EE performance before
the ECA algorithm (solid black line) is improved with the
application of ECA algorithm (red in case of non-POI and
blue for POI). Also note that for the non-POI cells the EE
performance is significantly improved as compared to the
non-sleep-mode conventional case. This aspect of the per-
formance analysis is further clarified through ERG (13) plots
in Figures 18-19 for non-POI and POI cells respectively. For
the non-POI case, up to 8 times ERG is achieved in certain
off-peak traffic conditions, and the same results for the POI
case reach a maximum of 2 times in off-peak conditions.

The traffic prediction accuracy will have crucial role
in determining the holistic performance (Energy Reduction
Gain) of the proposed Proactive Sleeping Cell solution that
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Fig. 18: Energy Reduction Gain (ERG) performance for non-
POI case
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Fig. 19: Energy Reduction Gain (ERG) performance for POI
case.

can be quantified as follows [50]:

ERGP−SON = α(ERGc) + (1 − α)(ERGic) (17)

where α is the prediction accuracy and ERGc and ERGic

are the Energy Reduction Gains for correct and incorrect
predictions. While evaluation of ERG for different values of
α is beyond the scope of this work, (17) can be employed for
assessing the gain of Proactive Sleeping Cell Solution and
the minimum accuracy needed to achieve any gain (refer
to Fig. 3 in [50]). Inaccuracies in traffic prediction might
lead to switching OFF some SCs in high traffic demand
regions where they should not have been switched OFF.
However, the proposed solution aims at switching the states
of SCs only while keeping the Macro cells ON all the time.
Therefore, in case of inaccurate predictions, Always ON
Macro cells will be there to offset the effect of inaccurate
predictions.

Concept drift issues in this case i.e. variation in the
underlying pattern of traffic over longer period of time that
can make the learned model inaccurate, can be addressed by
employing Adaptive Base Learning techniques in which the
training is reduced and expanded to identify the impact of
variation in learning window size. Training set is dynam-
ically modified to include moistures of past and present
data and prediction model is updated. Moreover, ensemble
techniques can be leveraged for making sure that training
data is diverse and unbiased. Weaker models are pruned
and remaining models are combined based on some weight-
ing criteria. Separate machine learning models trained for
weekends/weekdays/holidays can be employed for further
improvement of the prediction accuracies. Another possibly
more promising method is to incorporate additional contex-
tual data into the model that takes into account occurrence
of events and festivals and awareness of point of interests to
improve prediction accuracy.

5 RESULTS AND ANALYSIS USING SIMULATED DE-
TERMINISTIC TRAFFIC MODEL

In the aforementioned section, results pertaining to the sleep
mode phase of the ECA algorithm were presented only since
no information of the actual topology and user reported
SINR was available. Therefore in this section we present
results for our proposed ECA scheme using deterministic
traffic model and simulated topology and compare the
results in terms of power consumption and users data rate
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performance against the conventional schemes. Details of
the simulation parameters are given in Table 1.

TABLE 1: LTE-Based Scenario - Simulation Parameters.

Parameter Macro-cell Small-cell
Number of nodes 1 15
Carrier frequency 2.1 GHz
Bandwidth 10 MHz
Node transmit power 43 dBm 23 dBm
Path loss model 128.1 + 37.6 log10 (d[Km])
UE Generation Poison Arrival Process
RBThres

0 15%
Noise Figure at UE 9 dB
Thermal noise density −174 dBm/Hz
Cell Radius 800m 50m
P circuit [2] 120W 8.4W
Δ(7) 3.2 4

For the purpose of demonstrating the function of the
proposed algorithm, we simulate a network with 15 SCs
and a single macrocell. Number of users in the macrocell
and SCs are generated using Poison arrival process for each
snapshot. Simulations are performed for four normalised
load conditions of the network (0.25, 0.50, 0.75 and 1). The
value of λ for the Poison process is selected based on the
load observed in the results presented in prior sections. We
consider these four variations in network loads to analyse
our algorithm at different times of the day [51]. Further-
more, it is assumed all MUE have minimum data rate
requirement of 250 kbps. Using Monte-Carlo simulations,
1000 snap shots are generated for each load case and results
were averaged.

The operation of the ECA algorithm is depicted in Fig. 20
where a single snap shot is illustrated. The blue rings show
the active SCs, whereas the green rings show the SCs which
are switched to sleep mode and their SUEs are being served
by the macrocell. If we consider for example SCs ’2’ and ’13’,
both of them are switched to sleep mode and we can observe
that they have a some MUEs (red dots) in their vicinity.
The dominant interference to these MUEs causes muting of
resources at the SCs. In return due the low utilisation of
these SCs and the available capacity at the macrocell, the
UEs of these SCs are handovered to the the macrocell and
SCs ’2’ and ’13’ are switched to sleep mode. This will usually
happen at the low load times of the day. Sleeping SCs might
be awaken in case there is a congestion at the macrocell or in
case of increase in network load. If for example all the SUEs
have similar data rate requirements, then SC ’4’ would be
awakened first, as it has more number of SUEs.

The Cumulative Distribution Function (CDF) for the
data rates of MUEs is presented in Fig. 21. We compare
the performance of our proposed ECA scheme with Reuse-
1 scheme (where all nodes transmit at the same frequency
resources). It is evident from the Fig. 21 that in case of Reuse-
1 up to 20% of the users are in outage (below the required
data rate mark, as indicated in the figure). This is due to
the strong interference from the neighboring SCs serving
their users on the same resources. However, in case of ECA
scheme, this inter-tier interference is minimized and nearly
all the users are safe guarded from outage. This is made
possible by muting some of the SCs at certain RBs where
the victim MUEs were being served. The proposed ECA
scheme along with successfully safeguarding the victim
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Fig. 20: Snapshot of the network with normalised load = 0.5.
Red dots indicate the MUEs and blue dots indicate SUEs.
Blue rings indicate the active SCs and green rings indicate
SCs in sleep mode.

Fig. 21: CDF plot for MUE data rates

MUEs present in the vicinity of SCs, also maximizes the
energy efficiency of the network. The energy consump-
tion comparison between ECA scheme and a conventional
scheme with no sleep mode savings is presented in Fig. 22.
This comparison is shown for the four different considered
load states of the network. This comparison for different
load conditions is shown with the help of bar graphs and
the y-axis of Fig. 22 indicates the sum of total power con-
sumption (circuit and load dependent transmit power) of all
transmit nodes. The horizontal line in the middle of the plot
indicates the constant circuit power of the macrocell given
by equation (7) which is fixed for all cases. The remaining
top portion of the bars indicates the sum of macrocells load
dependent transmit power plus the circuit and transmit
power of all the active SCs. The true potential of ECA
scheme can be clearly seen for low to medium network
load conditions. This is due to the fact that in low traffic
conditions, the macrocell has unused capacity which can be
successfully used to serve SUE of under-utilized SCs. The
energy saving gains come from switching off the circuitry
of the SCs but as a trade-off the load dependent transmit
power of the macrocell is slightly increased. However, up
to 23% saving in total network power consumption can be
achieved using ECA in these traffic conditions.

The time complexity of the optimal exhaustive search
in our case shall be O(2(KMN)), which is exponential in
nature. However, for the state of the art algorithms that
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Fig. 22: Total power consumption for various network load
conditions.

Fig. 23: Time Complexity performance of ECA scheme.

either target interference or energy minimization problem
such as ORA (Optimal Resource Allocation) scheme [52],
the complexity is mainly dependent on solving the dual
problem. The number of computations required to solve the
RB allocation is K(M + 1) and N number of allocations
are required to solve for all RBs. The complexity for each
complete iteration is O(NK(M + 1)). The total complexity
of the sub-gradient method is polynomial in the number
of dual variable and is O(N + M). Therefore, the overall
complexity of the ORA scheme is O((N + M)2(NMK)).
The ECA scheme is solved by binary linear integer program-
ming.

There are several linear programming relaxations ap-
plied to such algorithms, which make them very effective
in practice but it is difficult to prove theoretical complexity
bounds on the performance of such algorithms. A compar-
ison in terms of number of iterations between the ORA
and ECA scheme is presented in Fig. 23, emphasizing on
the lower complexity, therefore, higher the practicality of
the ECA scheme. The minimalistic complexity of the ECA
algorithm makes it feasible to be applied to a practical LTE
network and can be updated within every LTE frame.

6 CONCLUSIONS

In this paper, we have proposed a proactive energy efficient
resource allocation solution that not only minimizes the
overall network energy consumption but also incorporates
the inter-tier interference mitigation solution in a LTE Het-
Nets environment. In this study, we exploit the predictable
nature of real traffic load to determine sleep schedule of
small cells and formulated the mathematical optimisation
problem. Furthermore, taking into account the computa-
tional complexity limitation of a practical network, we have

proposed a heuristic energy efficient small cell centralized
resource allocation algorithm. In order to demonstrate the
scale of potential energy savings in a practical network,
real CDR data from City of Milan was used. Large scale
data processing and analysis was performed exploiting the
big data ecosystem tools (Apache Spark) in order to ana-
lyze the activity patterns throughout the Milan City. The
proposed ECA algorithm, by making use of sleep-mode in
small cells shows a potential of significant energy savings
especially in off-peak times of the day. Results showed
that energy consumption could be reduced up to 8 times
in the dense heterogeneous network within an urban city
by incorporating our proposed energy consumption aware
resource allocation algorithm. Moreover, our deterministic-
load based simulation results clearly indicate that nearly all
macro-cell served users were protected from neighboring
small cell inter-tier interference in comparison to Reuse-
1 case. In addition, during the low traffic condition, the
proposed mechanism has shown to reduce a significant
amount of network energy by switching the under-utilized
cells to sleep mode.
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