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ABSTRACT

To be able to provide uninterrupted high quality of experience to the subscribers, operators must ensure high reliability of
their networks while aiming for zero downtime. With the growing complexity of the networks, there exists unprecedented
challenges in network optimization and planning, especially activities such as cell outage detection (COD) and mitigation
that are labour-intensive and costly. In this paper, we address the challenge of autonomous COD and cell outage compen-
sation in self-organising networks (SON). COD is a pre-requisite to trigger fully automated self-healing recovery actions
following cell outages or network failures. A special case of cell outage, referred to as sleeping cell, remains particularly
challenging to detect in state-of-the-art SON, because it triggers no alarms for operation and maintenance entity. Conse-
quently, no SON compensation function can be launched unless site visits or drive tests are performed, or complaints are
received by affected customers. To address this issue, our COD solution leverages minimization of drive test functional-
ity, recently specified in third generation partnership project Release 10 for LTE networks, in conjunction with state-of-the
art machine learning methods. Subsequently, the proposed cell outage compensation mechanism utilises fuzzy-based rein-
forcement learning mechanism to fill the coverage gap and improve the quality of service, for the users in the identified
outage zone, by reconfiguring the antenna and power parameters of the neighbouring cells. The simulation results show that
the proposed framework can detect cell outage situations in an autonomous fashion and also compensate for the detected
outage in a reliable manner. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increased demands of high throughput, coverage and
end user quality of service requirements, driven by ever
increasing mobile usage, incur additional challenges for
the network operators. Fueled by the mounting pressure to
reduce capital and operational expenditures and improve
efficiency in legacy networks, the self-organising network
(SON) paradigm aims to replace the classic manual config-
uration, post deployment optimization and maintenance in
cellular networks with self-configuration, self-optimization
and self-healing functionalities. A detailed review of the
state-of-the-art SON functions for legacy cellular networks
can be found in [1]. The main task within self-healing
functional domain is autonomous cell outage detection
(COD) and compensation. Current SON solutions gen-
erally assume that the spatio-temporal knowledge of a
problem that requires SON-based compensation is fully or
at least partially available; for example, location of cover-

age holes, handover ping-pong zones or congestion spots
are assumed to be known by the SON engine. Traditionally,
to assess and monitor mobile network performance, man-
ual drive test has to be conducted. However, this approach
cannot deliver the stringent resource efficiency and low
latency and cannot be used to construct dynamic models to
predict system behaviour in live-operation fashion.

This is particularly true for a sleeping cell (SC) scenario,
which is a special case of cell outage that can remain unde-
tected and uncompensated for hours or even days, because
no alarm is triggered for operation and maintenance system
[2]. An SC either cause deterioration of the service level or
a total loss of radio service in its coverage area, due to a
possible software, firmware or hardware problem. SC can
only be detected by means of manual drive tests or via sub-
scriber complaints. These solutions are not only time and
resource consuming but also require expert knowledge to
troubleshoot the problem. As future cellular network has
to rely more and more on higher cell densities, manual
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or semi-manual detection of SC can become a huge chal-
lenge. Therefore, automatic cell detection has become a
necessity so that timely compensation actions can be trig-
gered to resolve any issues. Once the outage is detected,
the operator can achieve self-resilience to network outages
by employing intelligent self-healing mechanism.

Self-healing block in SON consists of two modules,
namely COD and cell outage compensation (COC). COD
aims to autonomously detect outage cells, that is, cells
that are not operating properly due to possible failures,
for example, external failure such as power supply or net-
work connectivity, or even misconfiguration [2–4]. On the
other hand, COC refers to the automatic mitigation of the
degradation effect of the outage by appropriately adjusting
suitable radio parameters, such as the pilot power, antenna
elevation and azimuth angels of the surrounding cells for
coverage optimization [2].

The reported studies in literature that addressed the
problem of COD are either based on quantitative models
[5], which requires domain expert knowledge, or simply
rely on performance deviation metrics [6]. Until recently,
researchers have applied methods from the machine learn-
ing domain such as clustering algorithms [7] as well as
Bayesian networks [8] to automate the detection of faulty
cell behaviour. Coluccia et al. [9] analysed the variations
in the traffic profiles for 3G cellular systems to detect real-
world traffic anomalies. In particular, the problem of SC
detection has been addressed by constructing and compar-
ing a visibility graph of the network using neighbour cell
list reports [3].

Compared with the aforementioned approaches, the
COD solution proposed in this paper differs in various
aspects. Our proposed COD framework adopts a model-
driven approach that makes use of mobile terminal-assisted
data gathering solution based on minimise drive testing
(MDT) functionality [2] as specified by third genera-
tion partnership project (3GPP). MDT functionality allows
e-utran Node B (eNB) to request and configure user equip-
ment (UE) to report back the key performance indicators
(KPIs) from the serving and neighbouring cells along
with their location information. To accurately capture the
network dynamics, we first collect UE reported MDT
measurements and further extract a minimalistic KPI repre-
sentation by projecting them to a low-dimensional embed-
ding space. We then employ these embedded measure-
ments together with density and domain-based anomaly
detection models namely local outlier factor-based detec-
tor (LOFD) and one-class support vector machine-based
detector (OCSVMD). We compare and evaluate the per-
formance of these learning algorithms to autonomously
learn the ‘normal’ operational profile of the network,
while taking into consideration the acute dynamics of
the wireless environment due to channel conditions as
well as load fluctuations. The learned profile leverages
the intrinsic characteristics of embedded network mea-
surements to intelligently diagnose a sleeping/outage cell
situation. To the best of our knowledge, no prior study
examines the use of OCSVMD and LOFD in conjunction

with embedded MDT measurements for autonomous COD.
This is in contrast to state-of-the-art techniques that anal-
yse one or two KPIs to learn the decision threshold levels
and subsequently apply them for detecting network anoma-
lies. In addition, the COD framework further exploits
the geo-location associated with each measurement to
localise the position of the faulty cell, enabling the SON to
autonomously trigger COC actions.

Once the outage is properly detected, an automatic
COC scheme is required for coverage optimization in
order to continue serving the UEs in the outage area.
Considering the acute dynamics of the always varying
wireless environment in general, and the high variability
in terms of load fluctuations, in dense wireless deploy-
ments, we propose a fuzzy logic-based reinforcement
learning (RL) algorithm, which allows to learn online,
through interactions with the surrounding environment,
the best possible policy to compensate the outage. In lit-
erature, fuzzy logic algorithm has been studied [10] to
address the problem of self-recovery in case of cell out-
age in Long Term Evolution (LTE) network. Moreover,
fractional power control-based approaches in conjunction
with RL algorithm [11] have also been studied to address
the problem of near far effect by controlling the required
signal-to-interference-plus-noise ratio (SINR), in order to
reduce the call blocking rate. Motivated by this,partnership
project (3GPP we propose a fuzzy RL-based compensation
scheme in order to minimise the interference caused by the
compensating sites.

The main contribution of this paper can be summarised
as follows: firstly, we propose a novel COD framework
that exploits recently introduced MDT functionality in
conjunction with state-of-the-art machine learning meth-
ods to detect and localise cell outages in an autonomous
fashion. Secondly, we demonstrate the applicability of
a fuzzy RL-based method to achieve autonomous self-
recovery in case of network outages. Finally, the proposed
solution is validated with simulations that are set up in
accordance with 3GPP LTE standards. The remainder of
this paper is structured as follows: Section 2 presents the
system architecture for proposed self-healing framework.
Section 3 provides a detailed discussion of COD frame-
work that also includes a brief description of LOFD and
OCSVMD techniques that are used to profile, detect and
localise anomalous network behaviour. In Section 4, the
COC scheme has been explained, whereas in Section 5,
we provide details of our simulation setup and evaluation
methodology. Furthermore, we present extensive simula-
tion results to substantiate the performance of our pro-
posed self-healing framework. Finally, Section 6 concludes
this paper.

2. SYSTEM DESIGN

To alleviate the network performance deterioration, the
first step is to detect the cell/base station (BS) in outage.
This can be achieved by monitoring deviations from the
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Figure 1. System model for autonomous COD and COC framework.

KPI measurement report of the fault-free network. There-
after, the parameters of BSs neighbouring the outage BS
can be adjusted according to the operators policy so as to
compensate for the outage situation. Hence, we propose a
self-healing framework that primarily consists of the COD
and COC stages, as illustrated in Figure 1.

COD stage: As shown in Figure 1, firstly, to profile the
normal operational behaviour of the network, our solution
collects KPIs from the network leveraging MDT function-
ality. The goal is to use the learned profile to perform prob-
lem identification and localization autonomously, during
the monitoring period.

The MDT reporting schemes have been defined in LTE
Release 10 during 2011 [2]. The release proposes to con-
struct a database of MDT reports from the network using
Immediate or Logged MDT reporting configuration. In this
study, the UEs are configured to report the cell identifica-
tion and radio-measurement data to the target eNB based
on immediate MDT configuration procedure as shown in
Figure 1. The signalling flow of MDT reporting proce-
dure consists of configuration, measurement, reporting and
storing phase. In order to collect measurements, the UE is
configured for event-based periodical reporting. It is to be
noted that immediate MDT procedure can be configured to
start periodical reporting, once a trigger condition is met.
In our simulation setup, periodic measurements are per-
formed once an A2 event (i.e. serving cell becomes worst
than a threshold) occurs and subsequently triggers the
UEs to report periodic measurements from the problematic
coverage area. The KPI measurements consist of serving

Table I. MDT reported measurements.

Measurements Description

Location Longitude and latitude
information

Serving cell info Cell global identity
RSRP Reference signal received

power in dBm
RSRQ Reference signal received

quality in dB
Neighbouring cell information Three strongest intra-LTE

RSRP, RSRQ information

and neighbours reference signal received power (RSRP),
serving and neighbours reference signal received quality
(RSRQ), as specified in Table I, that is further reported
to the serving eNB. The eNB after retrieving these mea-
surements further appends time and wide-band channel
quality information (CQI) and forwards it to trace collec-
tion entity. Trace collection entity collects and stores the
trace reports that are subsequently processed to construct
an MDT database. In this study, the trace records obtained
from the reference scenario (i.e. fault-free) act as a bench-
mark data and are used by the anomaly detection models to
learn the network profile. These models are then employed
to autonomously detect and localise outage situations. The
proposed COD framework as shown in Figure 1 consists
of profiling, detection and localization phases, which is
further discussed in Section 3.
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COC stage: Once the cell outage situation has been
detected by the operation and maintenance, subsequently,
a COC scheme is triggered to optimise the coverage
and capacity of the identified outage zone according to
the operator policies. This is achieved by adjusting the
antenna gain through down-tilt and the downlink transmis-
sion power of the potential compensating eNBs. In our
proposed framework, COC is implemented via a fuzzy
logic-based RL scheme, as illustrated in Figure 1, which is
further explained in Section 4.

3. CELL OUTAGE DETECTION
FRAMEWORK

The proposed COD framework consists of profiling, detec-
tion and localization phases that are subsequently dis-
cussed in detail.

3.1. Profiling phase

In the profiling phase, the trace records are processed
to extract the feature vector O corresponding to each
MDT measurement. The measurements including RSRP
and quality of the serving, as well as of the three strongest
neighbouring cells and the CQI, are concatenated into a
feature vector, O, which is expressed as follows:

O D ŒRSRPS, RSRPn1, RSRPn2, RSRPn3, RSRQS,

RSRQn1, RSRQn2, RSRQn3, CQI�
(1)

where the subscripts S and n denote the serving and
neighbouring cells, respectively. The observation vector,
O, is a nine-dimensional feature vector of numerical fea-
tures that corresponds to one network measurement. To
reduce the complexity of storage, processing and analysing
this nine-dimensional feature vector is further embedded
to three dimensions in the Euclidean space using Multi-
dimensional Scaling (MDS) method [12]. MDS provides
a low dimensional embedding of the target KPI vectors
O while preserving the pairwise distances amongst them.
Given a t � t dissimilarity matrix �X of the MDT dataset,
MDS attempts to find t data points  1, : : : , t in m dimen-
sions, such that �‰ is similar to �X. Classical MDS
operates in Euclidean space and minimises the following
objective function

min
 

tX
iD1

tX
jD1

�
�
.X/
ij � �

.‰/
ij

�2
(2)

where �.X/ij D kxi � xjk
2 and �

.‰/
ij D k i �  jk

2.
Equation (2) can be reduced to a simplified form by
representing �X in terms of a kernel matrix using

XT X D �
1

2
H�XH (3)

where H D I � 1
t eeT and e is a column vector of all 1’s.

Hence, (2) can be rewritten as

min
 

tX
iD1

tX
jD1

�
xT

i xj �  
T
i  j

�2
(4)

As shown in [12], that ‰ can be obtained by solving
‰ D

p
ƒVT , where V and ƒ are the matrices of top m

eigenvectors and their corresponding eigenvalues of XT X,
respectively. The m dimensional embeddings of the data
points are the rows of

p
ƒVT , whereas the value of m is

chosen to be 3 in our case. Equation (4) represents the fact
that MDS minimises the Euclidean distances between dis-
tance matrices of the original and embedded space (i.e.�X

and �‰ , respectively). MDS aims to achieve an optimal
spatial configuration such that distances in the new con-

figuration (i.e. �.‰/ij ) are close in value to the observed

distances (i.e. �.X/ij ). This is achieved by constructing a
configuration of t points in Euclidean space by using infor-
mation about the distances between the t patterns in m
dimensions. The MDS-based pre-processing of the net-
work observation Oe has several advantages. In literature,
MDS technique has been widely used as a dimensional-
ity reduction method [12] to transform high-dimensional
data into meaningful representation of reduced dimension-
ality. One of the problems with high-dimensional datasets
is that in many cases, not all of the measured variables
are ‘critical’ for understanding the underlying phenomena.
As shown in literature that dimensionality reduction is a
critical pre-processing step for the analysis of real-world
datasets, because it mitigates the curse of dimensionality
and other undesired properties of high-dimensional spaces.
The low-dimensional embedding helps to reveal a hidden
structure that is not obvious from raw data matrices, allow-
ing to explore the interrelationships of high-dimensional
spaces. Given the growing complexity of the networks, par-
ticularly in case of SON, it is challenging to identify few
measurements that can accurately capture the behaviour of
the system. The MDS pre-processing of the network mea-
surements allows to achieve reduced representation that
corresponds to intrinsic dimensionality of data. Conse-
quently, it facilitates data modelling and further allows the
anomaly detection algorithms to obtain better estimation of
data density. As a result, the anomalous network measure-
ments can be detected with higher accuracy, as discussed in
the succeeding text. Moreover, unlike other dimensionality
reduction methods such as principal component analysis
or linear discriminant analysis, MDS does not make an
assumption of linear relationships between the variables,
and hence applicable to wide variety of data.

In addition to network measurements, each MDT report
is tagged with the location and time information as listed in
Table I, which is used in conjunction with RSRP values to
estimate the dominance or the coverage area of target BS in
the network. The dominance map estimation is further used
to autonomously localise the position of the outage BS.
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Figure 2. An overview of profiling and detection phases in COD framework.

The next step after the pre-processing is to develop a
reference database, DM , by storing the embedded measure-
ments that represent the normal operation of the network.
As shown in Figure 2, this reference database is used by
the state-of-the-art anomaly detection algorithms to learn
the ‘normal’ network profile. The goal of these algorithms
is to define an anomaly detection rule that can differentiate
between normal and abnormal MDT measurements by
computing a threshold ‘'’ based on a dissimilarity mea-
sure ‘D’. Thus, it can be treated as a binary classification
problem that can formally be expressed as follows:

f .xi/ D

�
Normal, if D.xi, DM/ 6 '
Anomalous, if D.xi, DM/ > '

(5)

Two state-of-the-art anomaly detection algorithms,
OCSVMD and LOFD, are examined for modelling the
dynamics of network operational behaviour. The brief
working description of the two detection algorithms are
summarised as follows.

3.1.1. Local outlier factor-based detector.

The LOFD method [13] adopts a density-based approach
to measure the degree of outlyingness of each instance.
In comparison with nearest neighbour-based approaches,
it works by considering the difference in the local den-
sity � of the sample to that of its k neighbours, instead
of relying on distance estimation alone. A higher score
will be assigned to the sample, if � is highly differ-
ent from the local densities of its neighbour. The algo-
rithm starts by first computing the distance of the mea-
surement x to its kth nearest neighbour denoted by dk,
such that

d.x, xj/ 6 d.x, xi/ for at least k samples

d.x, xj/ < d.x, xi/ for at most k � 1 samples
(6)

The subsequent step is to construct a neighbourhood Nk.x/
by including all those points that fall within the dk value.
The following step is to calculate the reachability distance
of sample x with respect to the rest of the samples

dr.x, xi/ D maxfdk.xi/, d.x, xi/g (7)

The local reachability density � is the inverse of average dr

and can be defined as

�.x/ D
j Nk.x/ jP

xi2Nk.x/ dr.x, xi/
(8)

Finally, the S.LOFD/ represents a local density-estimation
score, whereas value close to 1 mean xi has same density
relative to its neighbours. On the other hand, a significantly
high S.LOFD/ score is an indication of anomaly. It can be
computed as follows:

Algorithm 1 Local Outlier Factor Based Detection Model

1: Input Data X D fxjg
N
jD1, kmin, kmax

2: for jD 1, 2, : : : , N: do
3: for k =kmin to kmax: do
4: Find dk.xj/ from Equation 6
5: Find the neighbourhood Nk of xj

6: Calculate dr.xj, xi/ from Equation 7
7: Calculate �.xi/ from Equation 8
8: Calculate S.LOFD/ from Equation 9
9: end for

10: S.LOFD/ D max.S.LOFD/
kmin , : : : ,S.LOFD/

kmax
)

11: end for
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S.LOFD/.x/ D

P
xi2Nk.x/

�.xi/
�.x/

j Nk.x/ j
(9)

Because S.LOFD/ is sensitive to the choice of k, we iterate
between kmin and kmax value for each sample and take the
maximum S.LOFD/ as described in Algorithm 1.

3.1.2. One-class support vector machine-based

detector.

One-class support vector machine (SVM) by Schölkopf
et al. [14] maps the input data/feature vectors into a higher
dimensional space in order to find a maximum margin
hyperplane that best separates the vectors from the origin.
The idea is to find a binary function or a decision boundary
that corresponds to a classification rule

f .x/ D< w, x > Cb (10)

The w is a normal vector perpendicular to the hyperplane,
and b

kwk is an offset from the origin. For linearly separa-
ble cases, the maximisation of margin between two parallel
hyperplanes can be achieved by optimally selecting the val-
ues of w and b. This margin, according to the definition,
is 2
kwk . Hence, the optimal hyperplane should satisfy the

following conditions

minimise
1

2
kwk2

subject to : yi.hw, xii C b/ > 1

for i D 1, : : : , N

(11)

The solution of the optimization problem can be written
in an unconstrained dual form, which reveals that the final
solution can be obtained in terms of training vectors that
lie close to the hyperplanes, also referred to as support
vectors. To avoid overfitting on the training data, the con-
cept of soft decision boundaries was proposed, and slack
variable �i and regularisation constant � are introduced in
the objective function. The slack variable is used to soften
the decision boundaries, while � controls the degree of
penalization of �i. Few training errors are permitted if � is
increased while degrading the generalisation capability of
the classifier. A hard margin SVM classifier is obtained by
setting the value of � D 1 and � D 0. The detail mathe-
matical formulation for SVM models can be found in [14].
The original formulation of SVM is for linear classifica-
tion problems; however, non-linear cases can be solved by
applying a kernel trick. This involves replacing every inner
product of x.y by a non-linear kernel function, allowing the
formation of non-linear decision boundaries. The possible
choices of kernel functions includes polynomial, Gaussian
radial basis function (RBF) and sigmoid. In this study, we
have used the RBF kernel, �.x, y/ D exp.�kx� yk2=2	2/,
and the corresponding parameter values of the model are
selected using cross-validation (CV) method, as described
in Algorithm 2.

As shown in Figure 2, using the benchmark data, we
compute a reference z-score for each target eNB in the net-
work. The z-score is calculated as follows: zb D

jnb��nj
�n

where nb is the number of MDT reports labelled as anoma-
lies for the eNB b, and variables 
n and 	n are the mean
and standard deviation anomaly scores of the neighbouring
cells. In the profiling phase, we also estimate the so-called
dominance area, that is, for each cell, we define the area
where its signal is the strongest. This is to establish the
coverage range for each cell by exploiting the location
information tagged with each UE measurement. The dom-
inance estimation is required to determine the correct cell
and its corresponding MDT measurement association dur-
ing an outage situation. This is because as soon as the
SC situation develops in the network, the malfunctioning
eNB either becomes completely unavailable or experience
severe performance issues. As a result UEs in the affected
area experience frequent handovers to the neighbouring
cells. Hence, the reported measurements contain the cell
global identity of the neighbouring cells, instead that of
the target cell. Therefore, cell global identity alone can-
not be used to localise the correct position of faulty cell
during an outage situation. The detection and localization
phase of our COD framework make use of estimated dom-
inance map and reference z-score information established
in the profiling phase to detect and localise faulty cell, as
discussed in the following subsection.

3.2. Detection and localization phase

In the detection phase, the trained detection model is
employed to classify network measurements as normal or
anomalous. The output of the detection model allows us to
compute a test z-score for each eNB. To establish a cor-
rect cell measurement association, the geo-location of each
report is correlated with the estimated dominance maps.
In this way, we can achieve detection and localization by
comparing the deviation of test z-score of each cell with
that of reference z-score, as illustrated in Figure 2.

4. CELL OUTAGE COMPENSATION
FRAMEWORK

The output of the detection phase is fed into the COC mod-
ule. This module is based on our previous work combining
fuzzy logic and RL algorithm as detailed in [15].

4.1. Fuzzy logic and reinforcement learning

In the proposed COC module, fuzzy logic-based decision
mechanism is implemented in contrast to the binary (0,1)
decisions that is not always appropriate for applications
where a more dynamic and human-like approach is needed.
Fuzzy logic induces various degrees of outputs depend-
ing on the input conditions. The main benefits of such
outputs is that the system can be controlled using lin-
guistic terms such as ‘high’ or ‘low’ instead of providing
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actual numerical values. Three main components of a fuzzy
logic-based system are fuzzification, rule-based inference
and defuzzification. Fuzzification is the mapping of crisp
input variables to fuzzy sets (linguistic interpretation), rule-
based inference is the process of taking decisions based on
‘if...then’ pre-set rules and, finally, defuzzification process
generates quantifiable crisp outputs based on the degree of
membership of the outcome in the fuzzy sets. For our spe-
cific problem of multiple inputs and multiple outputs with a
requirement of degree of membership function, Mamdani-
type fuzzy logic is preferred due to its simplicity and
suitability for multiple outputs, whereas Sugeno-type fuzzy
has a single output without membership functions. Further,
we employ the temporal difference scheme to solve our
problem, as they do not require modelling of the environ-
ment dynamics and can be implemented in an incremental
fashion [16]. A bisector defuzzification is used, because
in a practical network, the antenna down-tilt angles could
only be changed with a maximum precision of 1=10th of
a fraction. So for this purpose, the new parameters for the
antenna down-tilt angles of the compensating neighbours
could be easily extracted by bisector method.

As for RL, it is a dynamic machine learning mech-
anism that interacts with the real time changes in the
environment. RL algorithm learns from its past experiences
(exploitation) and new actions (exploration), unlike super-
vised learning where the system is explicitly taught. A new
action is considered as a reward, if it generates a posi-
tive result towards the desired objective else the action is
considered as penalty.

4.2. Compensation phase

In our study, we demonstrate the combination of fuzzy
rules in conjunction with RL algorithm for COC. As shown
in Figure 1, the objective is to improve the coverage of
the identified outage cell. To achieve this, the proposed
solution compares the current performance Perf .X/ of the
outage cell and its neighbours against their previous per-
formance Perf .X � 1/. This change in performance is
closely monitored by the RL in order to select the direc-
tion of the fuzzy logic module based on the previous
actions. Depending on the fuzzy module rules, antenna
down-tilt and transmit powers of the neighbouring poten-
tial compensators are changed. After each cycle of action
(i.e. change in antenna down-tilt and transmit powers), the
new accumulated Perf .X/ is compared against the previous
Perf .X � 1/ by the RL algorithm. The antenna down-
tilt and transmit power of the compensators are drawn
as the membership functions of the fuzzy logic module,
and the target is set as the historical performance of the
network before outage. Instead of increasing the transmit
power of the compensators, higher weightage is given to
antenna down-tilt variation. This policy keeps the inter-
ference and the energy consumption of the network low.
RL modules aid to determine the direction of fuzzy logic
module by comparing the current performance with the
performance change as a result of previous fuzzy logic iter-
ation. As it is shown in Figure 1, if the change is accessed

as a reward, the fuzzy forward module is activated. Like-
wise, if the change is accessed as a penalty, the fuzzy
backward module is activated for the next iteration. The
fuzzy logic system iteratively reduces the resolution of the
change in action as the target performance reaches closer
to the target performance. This iterative process halts if
there is no improvement detected in Perf .X/ as compared
with Perf .X � 1/, in either of the fuzzy directions. At
this stage, we consider that the algorithm has finalised the
best possible compensation parameters for the potential
neighbouring cells.

In summary, our COC solution is based on optimising
the coverage and capacity of the identified outage zone
by changing the gains of antenna via adjusting the down-
tilts and downlink transmission powers of the potential
neighbour compensating BSs in that plane.

5. SIMULATION RESULTS

In this section, we first demonstrate the detection perfor-
mance of our COD framework and subsequently show the
coverage optimization achieved in the identified outage cell
by our COC solution. The aforementioned performance
results were obtained under different network load, channel
and configuration settings.

5.1. Simulation setup

To simulate the LTE network based on 3GPP specifica-
tions, we employ a full dynamic system tool. We set up a
baseline reference scenario that consists of 27 eNBs hav-
ing an inter-site distance (ISD) of 1000 m, with a cell
load of 10 users. All of these users are considered as
active users because they are configured to perform MDT
measurements. To model the variations in signal strength
due to topographic features in an urban environment, the
shadowing is configured to be 8 dB. Normal periodical
MDT measurements as well as radio link failure (RLF)-
triggered data due to intra-network mobility, reported by
UEs to eNBs, are used to construct a reference database
for training outage detection models. To simulate a hard-
ware failure in the network, at some point in the simulation,
the antenna gain of a BS is attenuated to �50 dBi that
leads to a cell outage in a network. The measurements col-
lected from the outage scenario are then used to evaluate
the detection and localization performance of the proposed
COD framework. In order to evaluate the performance of
the compensation module, we identify three neighbouring
sectors to compensate for the outage area. The antenna
down-tilt and transmission power of the neighbours are
adjusted and optimised so as the best possible configu-
ration is set to safeguard UEs in outage. The detailed
simulation parameters are listed in Table II. The detec-
tion performance of the outage detection models is also
examined for different network configurations, obtained by
varying the simulation parameter settings including ISD,
load and shadowing.
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Table II. Simulation parameters.

Parameter Values

Cellular layout 27 macrocell sites
Inter-site distance 500, 800 and 1000 m
Sectors 3 sectors per cell
User distribution Uniform random distribution
Path loss LŒdB� D 128.1C 37.6log10.R/
Antenna gain (normal scenario) 18 dBi
Antenna gain (SC scenario) �50 dBi
Slow fading std 4, 8 and 12 dB
Simulation length 420 s (1 time step D 1 ms/1TTI)
Control BS Tx power 46 dBm
Data BS Tx power 23 dBm
Horizontal HPBW 70°
Verticall HPBW 6.8°
Antenna pattern [15] B�.�/ D �max.B� , 12. ��ˆ

��
)

Network synchronisation Asynchronous
HARQ Asynchronous, 8 SAW channels,

maximum retransmission D 3
Cell selection criteria Strongest RSRP defines the

target cell
Load 10, 20 and 30 users/cell
MDT reporting interval 240 ms
Traffic model Infinite buffer
HO margin 3 dB

Parameter estimation and evaluation

The parameter selection for LOFD and OCSVMD is per-
formed using a combination of grid search and CV method
as listed in Algorithm 2. Initially, a grid of parameter val-
ues is specified that defines the parameter search space.
For example, the hyper-parameters of OCSVMD � and
kernel parameter � are varied from 0 to 1 with 0.05 inter-
val to determine different combinations. Subsequently, for
every unique parameter combination Ci, CV is performed
as follows: the DM is divided into training Dtrain and val-
idation dataset Dval, and subsequently, performance of the
model is evaluated using K-folds approach as shown in
Algorithm 2. The value of K is chosen to be 10 in our
framework. The performance estimate of the model over K
folds is averaged, and iteratively, this process is repeated
until all the parameter combinations are exhausted. The Ci

yielding the highest performance estimate is selected as an
optimal parameter combination for the target model. The
value of kmin and kmax for LOFD is found out to be 5 and
14. In case of OCSVMD, RBF kernel is employed, and
the values of the hyper-parameters � and � are found out
to be 0.3 and 0.25, respectively. Finally, the test data Dtest

from the outage scenario have been used to estimate the
performance of the trained models.

In our study, the quality of the target models is evaluated
using receiver operating characteristic (ROC) curve analy-
sis. The ROC curve plots the true positive rate or detection
rate (DR) (i.e. a percentage of anomalous measurements
correctly classified as anomalies) against the false positive
rates (i.e. a percentage of normal cell measurements clas-
sified as anomalies) at various threshold settings. An area
under ROC curve (AUC) metric is used for model compari-
son, whereas an AUC value of 1 or close to it is an indicator
of higher discriminatory power of the target algorithm.

Algorithm 2 Parameter Estimation using CV Method
1: Define parameter combination Ci, i D 1, : : : , M
2: for iD 1, 2, : : : , M: do
3: Split the target dataset DM into K chunks.
4: for l D 1, 2, : : : , K: do
5: Set Dval to be the lth chunk of data
6: Set Dtrain to be the other K � 1 chunks.
7: Train model using Ci, Dtrain and evaluate its

performance Pl on Dval.
8: end for
9: Compute average performance Pi over K chunks

10: end for
11: Parameter Selection: Select Ci corresponding to

highest Pi

12: Performance Estimation: Evaluate the
performance of the model M.Ci, DM/ on Dtest

5.2. Cell outage detection results

The training database DM contains pre-processed embed-
ded measurements from the reference scenario as discussed
in Section 3.1. The database is subsequently used to
model the normal operational behaviour of the network.
The database measurement also includes RLF-triggered
samples, because even in the reference scenario, UEs expe-
rience connection failures due to intra-LTE mobility or
shadowing. The test data collected from the outage sce-
nario are used to evaluate the performance of the outage
detection models.

The diagnosis process has been tested in 12 scenar-
ios by changing the shadowing, user-density and ISD
parameters of the simulation setup as listed in Table II.
We have evaluated the detection performance of the
OCSVMD and LOFD against every target network con-
figuration. Figure 3(a) illustrates the MDS projection of
MDT measurements from the normal and the outage sce-
nario using the baseline network operational settings. It can
be observed that the abnormal measurements belonging to
SC scenario lie far from the regular training observations.
As discussed earlier in Section 3.1, MDS tries to maximise
the variance between the data points, and consequently,
dissimilar points are projected far from each other, allow-
ing the models to compute a robust dissimilarity measure
for outage detection. The goal of OCSVMD is to learn a
close frontier delimiting the contour of training observa-
tions obtained from the non-outage scenario. In this way,
any observation that lie outside of this frontier-delimited
subspace (i.e. representative of the normal state of the net-
work) is classified as an anomaly or an abnormal measure-
ment. However, the inlier population (i.e. measurements
that lie inside the OCSVMD frontier) is contaminated with
RLF events, which ultimately elongates the shape of the
learned frontier. As a result, during the detection phase,
the observations from the outage scenario exhibiting sim-
ilarity to RLF-like observations are positioned within the
frontier-delimited space as shown in Figure 3(a), and hence
wrongly classified as normal. The shape of the learned
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Figure 3. (a) OCSVMD learned network profile for reference scenario, (b) low-shadowing case, (c) distribution of RSRP values for all
shadowing cases, (d) medium traffic case, (e) smaller ISD case and (f) distribution of RSRP values for all ISD cases. (a) Reference
scenario: shadowing D 8 dB; (b) shadowing D 4 dB; (c) RSRP distribution; (d) load D 20 UE/cell; (e) ISD D 500 m; and (f) RSRP

distribution.

Figure 4. OCSVMD ROC curves for shadowing, traffic and ISD cases. (a) Shadowing, (b) cell load and (c) ISD.

frontier determines the precision of the model for detecting
anomalous network measurements.

To study the impact of different radio propagation envi-
ronment on the detection performance, we varied the shad-
owing parameter from 8 to 4 dB and 12 dB cases. Under
low-shadowing conditions (i.e. 4 dB), it can be observed
from Figure 3(b) that inlier population exhibits wider sep-
aration from anomalous observation in comparison with
reference scenario. This is because higher shadowing con-
ditions affect the spread of the KPI measurements, as
indicated in Figure 3(c). It can be inferred from the ROC
analysis of OCSVMD that detection performance deterio-
rates as the shadowing effect is varied from low to high.
As shown in Figure 4(a), at target false positive rate of
10 per cent, the model reports the highest DR (i.e. TPR)
of 93 per cent under low-shadowing conditions. Likewise,
the AUC score has also decreased from 0.98 to 0.94 for
high-shadowing scenario (i.e. 12 dB). Moreover, we also
analysed the OCSVMD detection performance under vary-
ing traffic conditions. Figure 3(d) depicts the distribution
of measurements in the MDS space for a user density of 20
per cell. The higher user density implies an increase in the
number of training observations that lead to a more accu-

rate estimate of the frontier shape. This explains the slight
improvement in the AUC score for OCSVMD with the
increase in the cell load as shown in Figure 4(b). A notable
DR improvement of 10 per cent is observed for high traf-
fic scenario (i.e. 30 users per cell) in comparison with the
baseline OCSVMD.

As for different ISD configurations of a network, we see
a significant change in the values of KPI measurements.
This is expected because there is a strong correlation
between UE reported KPIs and their distance from the
eNB. Figure 3(f) shows the distribution of UE reported
RSRP values for three different ISD cases. In case of
ISD D 500 m, we see a distinct peak of RSRP values
around �90 dBm. Likewise, at the farther left end, we
see a small peak around �180 dBm that is mainly due to
RLF-like observations. In contrast, when ISD D 1000 m,
the highest peak value is observed at around �140 dBm,
and the observed measurements have lower data spread as
indicated in Figure 3(f). As already highlighted, the shape
of the learned frontier by OCSVMD is directly affected
by the distribution of observations in the embedded space.
This becomes evident in Figure 3(e), which shows that
the OCSVMD learns two decision frontiers instead of
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Figure 5. Network profiling using LOFD. (a) Reference scenario: shadowing D 8 dB; (b) CDF of SLOFD for shadowing cases and (c)
CDF of SLOFD for ISD cases.

Figure 6. LOFD ROC curves for shadowing, traffic and ISD cases. (a) Shadowing; (b) cell load and (c) ISD.

one, because there exists two distinct modes in the data
distribution, for the case of ISD D 500 m. As a result,
OCSVMD interprets a region where RLF-like event is
clustered, as inliers, which leads to an inaccurate network
profile. The ROC analysis shown in Figure 4(c) clearly
indicates the degradation of OCSVMD performance for
lower ISD values.

Similar to OCSVMD, the performance of LOFD is
also evaluated for all target network configurations. As
explained in Section 3.1, LOFD derives a measure of out-
lyingness of an observation (i.e. SLOFD), based on the
relative data density of its neighbourhood. Figure 5(a)
illustrates the labels assigned by LOFD to the observations
obtained from the baseline scenario. It can be observed that
LOFD classifies some of the test instances that even lie
close to the vicinity of training observations as anomalous.
Because of such instances, LOFD receives a high outly-
ing scores SLOFD, because the local density around them
is highly different from the density of its neighbourhood.
To further illustrate the impact of the variation and spread
of the data on the values of SLOFD, we plot a cumulative
distribution function (CDF) for different shadowing sce-
narios, as shown in Figure 5(b). It can be seen that for
low-shadowing scenario, almost 80 per cent of the obser-
vations obtain SLOFD value less than 50. However, as the
shadowing increases, we see a gradual increase in the value
of SLOFD. Likewise, a similar behaviour is observed with
the increase of ISD, as shown in Figure 5(c). The shad-
owing and ISD parameters influence the distribution and
spread of the data as explained earlier, and consequently
the value of SLOFD. This leads to a low detection perfor-
mance of LOFD, because it generates an increased number
of false alarms.

Figure 7. Localization of SC based on per cell z-scores.

As shown in Figure 6(a), the AUC score for LOFD
decreases for high-shadowing scenario. On the other hand,
the increase in the cell load also increases the spread of the
data, which consequently affect the detection performance
of LOFD. As shown in Figure 6(b), at false alarm rate of
10 per cent, the highest DR of 81 per cent is achieved for
a network scenario in which load configuration is set to be
10 users per cell. Similarly, the change in the ISD has a
severe effect on the model performance, and low detection
performance of 60 and 30 per cent is achieved for 800 m
and 500 m ISD configurations, as shown in Figure 6(c).

In summary, we can conclude from the reported
results that OCSVMD under most cases achieves a better
detection performance in comparison with LOFD. The
outage detection models yield worst performance scores
particularly for low ISD network configuration. The perfor-
mance issue of the target outage detection models can be
addressed as follows: for OCSVMD, in the pre-processing
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Figure 8. Radio environment maps and SINR CDF for normal, outage and compensated case. (a) Normal; (b) outage; (c)
compensation; (d) CDF plot and (e) mean data rate.

step, the RLF-like events must be filtered before con-
structing a training database. This would help decrease the
spread of the data and the model would only learn frontier
that corresponds to normal operational network behaviour.
In case of LOFD, incremental drift detection schemes can
be incorporated to re-tune the model parameters in order to
minimise the false alarm rate.

5.3. Localization

Because OCSVMD model has outperformed LOFD for
most test cases, it has been selected as a final model to
compute per cell z-scores for the normal and SC scenario,
as shown in Figure 7. It can be observed from Figure 7
that measurements are classified as anomalous even in the
normal operational phase of the network due to occur-
rence of RLF events. This is particularly true for cell ID
1, 5, 11, 16 and 19 whose nb values are found to be 700,
2000, 3000 and 1500, respectively, in the reference sce-
nario. However, during an outage scenario, because cell 11
is configured as a faulty cell, the corresponding z-scores are
significantly higher than the rest of the network. A simple
decision threshold can be applied on the computed z-scores
to autonomously localise faulty cells, and consequently, an
alarm can be triggered. In addition to cell outage local-
ization, the change in the z-score can be used to identify
performance degradation issues or a weaker coverage prob-
lems. This information can act as an input to self-healing
block of SON engine, which can then trigger automated
recovery process.

5.4. Compensation

Plot shown in Figure 8(a)–(c) presents the radio environ-
ment maps for the normal, outage and compensated cases,
respectively, and the colour bar shows the SINR levels. As
the subject cell site goes into outage, it is visible that the
coverage area of the outage cell has very low SINR lev-
els (depicted in Figure 8(b)), and consequently, the UEs in
this low SINR region are susceptible to outage (failure of
link to the network). The compensator module optimises
the antenna down-tilt and transmit powers of the three
potential neighbours such that the coverage gap is filled.
It is visible from radio environment map in Figure 8(c)
that SINR of outage region is significantly improved after
compensation.

Figure 8(d) presents the comparison of SINR levels with
a CDF plot for the target region in and around the outage
cell. It is visible from the zoomed figure that in the outage
case, there are several UEs in the low SINR region. How-
ever, after compensation, there is a significant reduction in
the percentile of users in the low SINR region. Another vis-
ible effect is that in the compensation case, a majority of
the UEs also have substantially high SINR levels. This is
due to the fact that the increase transmit power and change
in antenna down-tilt configuration further improves the
SINR performance of the UEs closer to the compensating
neighbours.

We also present in Figure 8(e) the bandwidth normalised
data rate performance of the UEs present in the outage area.
It is evident that the mean data rate performance of the
UEs is significantly reduced in case of an outage. However,
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as the compensation is applied, the coverage of the identi-
fied outage area is optimised relatively close to the normal
conditions.

6. CONCLUSION

This paper has presented a data-driven analytics framework
for autonomous outage detection and coverage optimiza-
tion in an LTE network, which exploits the minimiza-
tion of drive test functionality as specified by 3GPP in
Release 10. The outage detection approach first learns
a normal profile of the network behaviour by projecting
the network measurements to low-dimensional space. For
this purpose, multi-dimensional scaling method in con-
junction with domain and density-based detection mod-
els, OCSVMD and LOFD, respectively, was examined
for different network conditions. It was established that
OCSVMD, a domain-based detection model attained a
higher detection accuracy compared with LOFD, which
adopts a density-based approach to identify abnormal mea-
surements. Finally, the UE reported coordinate information
is employed to establish the dominance areas of target cells
that are subsequently used to localise the position of outage
zone. To optimise the coverage and capacity of the identi-
fied outage zone, a fuzzy-based RL algorithm for COC is
proposed. The COC algorithm achieves coverage optimiza-
tion by adjusting the gains of the antennas through antenna
down-tilt and downlink transmission power of the neigh-
bouring BSs. Simulation results have shown that the COC
algorithm can recover a significant number of UEs from
outage.
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