A New Performance Characterization Framework for Deployment Architectures of Next Generation Distributed Cellular Networks

A. Imran, Student Member, IEEE, M. A. Imran, Member, IEEE, R. Tafazolli, Member, IEEE Center of Communication System Research, University of Surrey, UK

Abstract— Performance of next generation OFDM/OFDMA based Distributed Cellular Network (ODCN) where no cooperation based interference management schemes are used, is dependent on four major factors i.e. 1) spectrum reuse factor, 2) number of sectors per site, 3) number of relay station per site and 4) modulation and coding efficiency achievable through link adaptation. The combined affect these factors on overall performance of a Deployment Architecture (DA) for ODCN and tradeoffs they offer, is an overlooked issue. In this paper we provide a framework to characterize the performance of various DA’s by deriving two unique performance metrics for 1) spectral efficiency and 2) fairness among users. These metrics are designed to include the effect of all four contributing factors. We evaluate these metrics for a wide set of DA’s through extensive system level simulations. The results provide a comparison of various DA’s for both cellular and relay enhanced cellular systems in terms of spectral efficiency and fairness they offer and also provide an interesting insight into tradeoff between the two performance metrics. Numerical results show that, contrary to common notion, DA’s with highest spectrum efficiency are not necessarily those that resort to full frequency reuse. In fact, frequency reuse of 3 with 6 sectors per site is spectrally more efficient than that with full frequency reuse and 3 sectors. In case of relay station enhanced ODCN a DA with full frequency reuse, six sectors and 3 relays per site is spectrally more efficient and can yield around 170% higher spectrum efficiency compared to counterpart DA without RS.

I. INTRODUCTION

Next Generation Cellular Networks have two important differences from the existing cellular networks. First they are aiming for highly distributed architecture in order to achieve the goals of low signaling overheads, low complexity, higher scalability and more self organization [1]. Second they are being built on OFDM/OFDMA based physical and MAC layers. The reason for this is that OFDM based physical layer provides robustness to mutlipath environment while OFDMA based MAC layer provides higher capacity through interference mitigation in multiple access scenarios. Another very important advantage of OFDM/OFDMA is its granularity in sub-carrier allocation. This feature of OFDM/OFDMA cellular networks not only allows differentiated services to be supported easily but also allows to dynamically adapt individual user links according to time varying channel conditions. This enables modulation and coding schemes with higher Modulation and Coding Efficiency (MCE) to be used for users with better link quality, thus exploiting the multi user diversity to improve the overall Spectrum Efficiency (SE).

Higher MCE is not only possible by exploiting natural user diversity, but it can also be achieved through synthetic means e.g. by designing a Deployment Architecture (DA) which improves the overall SINR distribution in the whole coverage area of the system. In this paper we provide a framework to investigate the effects and tradeoffs of three such synthetic factors of DA which can be used to boost SINR distribution in the in the coverage area i.e. spectrum reuse factor (SRF), No. Sectors per site (NSPS), and No. of relay station (RS) per site (NRSP).

In fully loaded ODCN that does not resort to any feedback and cooperation based interference mitigation techniques, lower the SRF, better will be the average available SINR in coverage area. In ODCN, this brings in a new tradeoff between increase in SE achievable by increasing SRF and increase in the SE by resorting to higher MCE through link adaptation. Another degree of freedom is added to this tradeoff through sectorization. Because, sectorization can potentially improve SINR in the coverage area by reducing the effective number of interfering cells but at the same time it incurs loss in terms spectrum reuse efficiency due to division of available spectrum among the sectors.

In addition to improvement in average SE, another very desirable performance goal is fairness among users, or specifically the improvement of service profile of cell edge users as they are most vulnerable to receive lowest SINR due to their closeness to interfering cells. This goal is one of the top priorities of 3GPP [2]. To achieve this goal, addition of relay stations is being considered in ODCN e.g. LTE Advance. 802.16m as RS have been shown to yield a significant improvement in SINR distribution in the low coverage areas e.g. cell edge or heavily shadowed zones[3]. Although RS also offer potential for reduction in cost but a down side of RS’s is that they need extra radio resources to multiplex either in time or frequency with their parent BS in order to avoid mutual interference. This introduces a third tradeoff between the gain SE the RS’s can provide by boosting SINR and loss in SE the RS cause due to multiplexing with BS. Most of the studies on RS enhanced ODCN report the advantage of relays assuming centralized resource allocation scenario and the heavy amount of signaling required to implement an interference mitigation technique is neglected in their analysis [4-6]. Therefore, in this paper we consider system without any feedback or cooperation based interference mitigation techniques i.e. a distributed OFDM/OFDMA cellular system where interference is determined mainly by DA i.e. SRF, NSPS and NRPS. We call it ODCN or R-ODCN (RS enhanced ODCN). How does the SE and fairness among users in the whole coverage area is affected by SRF, NSPS and NRPS and whether the increase in SE these factors bring through improved SINR distribution

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He T. C. Author is with the Electrical Engineering Department, University of Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).
outweighs the decrease in SE due to multiplexing and truncating losses incurred by these factors, is a question over looked in literature, to the best of our knowledge, and is addressed in this paper.

To this end, we propose two performance metrics for spectrum efficiency and fairness each. Contrary to conventional measures for these performance indicators, the proposed metrics are designed to explicitly reflect the combined effect of SRF, NSPS, RSP and as well as MCE on overall SE and fairness of various DA’s for ODCN and R-ODCN and thus allow us to investigate and quantify the aforementioned tradeoffs.

Performance in terms of proposed metrics is evaluated for various DA’s for ODCN and R-ODCN through extensive system level simulations for a range of SRF, NSPS and NRPS. Spectral efficiency metric is evaluated using theoretical Shannon bound as well as practical LTE modulation and coding schemes. Results provide a performance comparison of various DA’s for ODCN and R-ODCN in terms of spectral efficiency and fairness and also provide a novel insight into the underlying tradeoff between the spectral efficiency and fairness.

The rest of the paper is organized as follows. Section II investigates the tradeoff among SRF, NSPS, NRPS and MCE and their effect on overall system throughput and SE. In Section III, proposed performance metrics for spectrum efficiency and fairness are derived and explained. IV explains the simulation scenario. Section V discusses the results and finally section VI concludes the study.

II. FACTORS AFFECTING THE PERFORMANCE OF DA’S

We consider downlink scenario of a multi cell R-ODCN where \(\mathcal{N} = \{1,2,3,...,N\} \) is set of BS’s in the coverage area, \(S = \{1,2,3,...,S\} \) is set of sectors per BS and \(\mathcal{R} = \{1,2,3,...,R\} \) is set of RS per BS. \(\mathcal{K} = \{1,2,3,...,K\} \) is the set of users in the coverage area of the system, out of which \(|\mathcal{K}| \) are in the coverage area BS’s and \(|\mathcal{R}| \) are in the coverage area of RS’s such that \(|\mathcal{R}| + |\mathcal{K}| = |\mathcal{K}|\). \(\mathcal{M} = \{1,2,3,...,M\} \) is set of sub carriers allocated to each BS which further shares it with its child RS either in time or frequency with a sharing factor \(\rho^b \) such that \(\rho^b + \rho^r = 1 \). Since BS and RS multiplex in frequency/time as in IEEE802.16j, hence they do not interfere to each other. Received signal level in dBm from sector s of nth BS on mth subcarrier for kth user at a given location in the coverage area can be given as

\[
S^b_{k,m} = P^{b}_{m,s,n} + G^b_{k,s,n}(\theta^b_{k,s,n}, \phi^b_{k,s,n}) + L^b_{k,m}(D^b_{k,m}, f) + \alpha^b_{k,s,n} \quad \text{(1)}
\]

where post script b indicates association with BS. \(P^{b}_{m,s,n} \) is the transmission power on mth sub-carrier from the sector s of nth BS. \(G^b_{k,s,n} \) is the antenna gain of sector s of nth BS towards user k. It is a function of the elevation angle \(\theta^b_{k,s,n} \) and azimuth angle \(\phi^b_{k,s,n} \) between location p of kth user and bore site of respective antenna. \(P^{b}_{m,s,n} \) is the pathloss as function of distance \(D^b_{k,m} \) between user k and BS n and the frequency of operation f. \(\alpha^b_{k,s,n} \) is the log normal shadowing faced by the ith user, while receiving signal from bth sector of nth BS. Similarly, the received signal level from the rth RS of nth BS for user k on mth sub-carrier can be written as

\[
S^r_{k,m} = P^r_{m,r} + G^r_{k,r} \left(\theta^r_{k,s,n}, \phi^r_{k,s,n} \right) + L^r_{k,m}(D^r_{k,m}, f) + \alpha^r_{k,r} \quad \text{(2)}
\]

where post script r indicates association with a RS.

The signal to interference and noise ratio i.e. SINR for the kth user associated to a BS on mth subcarrier will be

\[
\text{SINR}^b_{k,m} = \frac{S^b_{k,m}}{\sigma^b_{k,m} + \rho^b \cdot \text{MCE}_{k,m}} \quad \text{(3)}
\]

\[
I^b_{k,m} = \sum_{\forall n \in \mathcal{N} \setminus k} \sum_{\forall s \in \mathcal{S} \setminus k} S^b_{k,m} \cdot u(m) \quad \text{(4)}
\]

\[
u(m) = \begin{cases} 1 & \text{if } m = m^k \\ 0 & \text{otherwise} \end{cases} \quad \text{(5)}
\]

Where \(\sigma^2_{k,m} \) is thermal noise floor of kth user’s receiver and \(n^k \) and \(s^k \), respectively denote that particular BS and the sector to which user k is associated. \(m^k \) denotes the carrier being used by the user k. The MCE achievable on a given link is dependent on the SINR available on that link. Theoretically the maximum achievable MCE on link can be determined by the Shannon bound i.e.

\[
\text{MCE}_{k,m} = \log_2 \left(1 + \text{SINR}_{k,m} \right) \quad \text{(6)}
\]

But pragmatically, MCE is a discrete function of SINR on link and depends on the set of modulation and coding schemes being used by the system i.e.

\[
\text{MCE}_{k,m} = f[\text{SINR}_{k,m}] \quad \text{(7)}
\]

where[.] represents discrete function and \(\text{MCE}_{k,m} \) is modulation and coding efficiency of the link for kth user on mth sub-carrier. Thus the total throughput of users attached to BS can be given by.

\[
C^b_{\text{achivable}} = \sum_{\forall k \in \mathcal{K}} \sum_{\forall m \in \mathcal{M} \setminus k} \frac{B}{\rho^b} \times \text{MCE}_{k,m} \quad \text{(8)}
\]

where \(\mathcal{M}^k \) is set of sub-carriers allocated to user k, and B is the sub-carrier Bandwidth.

By substituting Eq.(3)-(6) in Eq. (8), the maximum theoretically achievable aggregate throughput of users attached to BS in the R-ODCN can be determined by

\[
C^b_{\text{achivable}} = \sum_{\forall k \in \mathcal{K}} \sum_{\forall m \in \mathcal{M} \setminus k} \frac{B}{\rho^b} \log_2 \left(\frac{S_{k,m}}{\sigma^2_{k,m} + \sum_{\forall n \in \mathcal{N} \setminus k} \sum_{\forall r \in \mathcal{R} \setminus k} S^r_{k,m} \cdot u(m)} \right) \quad \text{(9)}
\]

But in ODCN where link adaptation is in operation the actual achievable aggregate throughput of all users attached to BS can be represented by substituting Eq.(7) in Eq. (8)

\[
C^b_{\text{achivable}} = \sum_{\forall k \in \mathcal{K}} \sum_{\forall m \in \mathcal{M} \setminus k} \frac{B}{\rho^b} \cdot f[\text{SINR}_{k,m}] \quad \text{(10)}
\]

Similarly if the user k is attached to a RS instead of BS the SINR perceived can be given as

\[
\text{SINR}^r_{k,m} = S^r_{k,m} / \left(\sigma^2_{k,m} + \sum_{\forall r \in \mathcal{R} \setminus k} S^r_{k,m} \cdot u(m) \right) \quad \text{(11)}
\]
Then the aggregate theoretical and practical throughputs of all users attached to RS in the coverage can be given as.

\[C_{th}^{r} = \sum_{\forall k \in \mathcal{K}} \sum_{\forall m \in \mathcal{M}_k} \frac{B^{}}{\rho^{r}_m} \log_2 \left(1 + \frac{S_{km}^r}{\sigma_{km}^2 + \sum_{\forall n \in \mathcal{N}}} S_{km}^r \right) \]

... (12)

\[C_{achievable}^{r} = \sum_{\forall k \in \mathcal{K}} \sum_{\forall m \in \mathcal{M}_k} \frac{B^{}}{\rho^{r}_m \cdot f[SINR_{km}]} \]

... (13)

The total achievable throughput in the coverage area can be written using Eq.(9) and (12)

\[C_{total}^{r} = \sum_{\forall k \in \mathcal{K}} \sum_{\forall m \in \mathcal{M}_k} \frac{B^{}}{\rho^{r}_m \cdot f[SINR_{km}]} \]

... (14) in terms of area A as follows

\[\zeta = \sum_{L=0}^{L} \left(\text{MCE}_l \times \frac{A_l}{A_t} \right) \]

... (19)

Where \(A_t\) is total coverage area of the system.

\[A_l = \sum_{\forall p \in \mathcal{P}} U_l (p), \quad \forall l \in \{0, 1, 2, 3, \ldots, L\} \]

... (20)

Whereas \(U_l(p)\) is defined as follows.

For \(l \in L\{0, L\}\) : \(U_l(p) = \begin{cases} 1, & \text{if } T_l < \text{SINR}_p \leq T_{l+1} \\ 0, & \text{Otherwise} \end{cases} \)

For \(l = L\) : \(U_l(p) = \begin{cases} 1, & \text{if } \text{SINR}_p \leq T_0 \\ 0, & \text{Otherwise} \end{cases} \)

And for \(l = 0\) : \(U_l(p) = \begin{cases} 1, & \text{if } \text{SINR}_p < T_0 \\ 0, & \text{Otherwise} \end{cases} \)

Where \(n^o\) and \(j^o\) denote the respective sector and BS in which location \(p\) lies. Where \(\mathcal{P} = \{1, 2, 3, \ldots \} \) is set of all points in the coverage area.

Now let \(L = \{0, 1, 2, 3, \ldots, L\}\) is set of modulation and coding schemes available to be used in ODCN or R-ODCN and MCE\(_l\) denotes the respective modulation and efficiency of \(l\)th scheme. Where \(l=0\) means modulation and coding scheme with zero spectral efficiency i.e. no link and L is modulation and coding scheme with highest spectral efficiency. Now we can define a metric \(\zeta\) as follows.

\[\zeta = \sum_{L=0}^{L} \left(\text{MCE}_l \times \frac{A_l}{A_t} \right) \]

... (18)

It is to be noted, from Eq. (3) and (6), that on downlink SINR perceived by user in a fully loaded ODCN or R-ODCN i.e. when \(u(m) = 1\), is mainly dependent on the, SRF, NSPS and NRPS. And Eq.(13) shows that, system throughput hence spectral efficiency , in addition to SRF, NSPS, NRPS, is dependent of resource sharing factor between BS and RS as well as actual mapping of SINR to MCE i.e. \(f[.]\) This mapping is determined by the set of modulation and coding schemes used in the system. We will build on these dependencies when designing the performance metrics in section III.

III. PROPOSED PERFORMANCE METRICS

A. Effective spectrum efficiency

The conventional definition of SE is

\[\eta = \frac{throughput}{BW} \text{ (bps/Hz)} \]

... (15)

where \(BW=\text{BxM}\). Now we present and alternative way to define SE which can be used more directly to characterize the SE of various DA’s while explicitly accounting for SRF, NSPS, NRPS and MCE.

Since the sub carrier bandwidth in the ODCN system is fixed so the throughput on single sub-carrier in a given link and hence the total throughput of the system depends on MCE (in bps/Hz) on each link. The MCE in turn depends on SINR available on that link. Thus, from Eq. (13) and Eq. (14) it can be seen that in ODCN or R-ODCN with total bandwidth fixed the theoretical and actual throughput hence the SE of system depends on the SINR distribution in the coverage area and SRF, NSPS and NRPS. In interference limited scenario, \(\sigma_{km}^2 \approx 1\), hence the SINR available on sub-carrier \(m\) to user \(k\) is mainly dependent on the location \(p\) of the user within cell and can be written as.

\[\text{SINR}_p = \frac{S_{km}}{\sum_{\forall n \in \mathcal{N} \setminus \{p\}} S_{km}} \]

... (16)

Where \(n^o\) and \(j^o\) denote the respective sector and BS in which location \(p\) lies. Where \(\mathcal{P} = \{1, 2, 3, \ldots \} \) is set of all points in the coverage area.

Hence the metric \(\zeta\) in equation (19) is actually expected value of MCE i.e.

\[\zeta = E(\text{MCE}) = \sum_{\forall l \in L} \text{MCE}_l \times \gamma_l \]

... (22)

where \(\gamma_l = \frac{A_l}{A_t}\) is probability of user being at point in coverage area where \(l\)th modulation and coding scheme can be supported. So \(\zeta\) is the average MCE in the whole system, Eq.(14) implies that \(\zeta = \eta\). Now we can define the new metric for spectrum efficiency of ODCN which takes into account the effect of MCE, SRF, NSPS and NRPS and call it Effective SE (ESE). It can be written as

\[ESE = \frac{\zeta \times \text{RF}}{\text{MF}} \]

... (23)

where SFR is spectrum reuse factor and represents number of times spectrum is reused within a cell. It depends on the number of sectors per cell and frequency reuse. For example,
if in system with 6 sector per cell, if total spectrum is divided in two parts (i.e. FR=2) and is used in each alternative sectors of the same site then SRF = \(\frac{2}{3} = 3 \) and MF=2. If DA has RS as well and \(\rho^r \) is the factor with which spectrum is shared between BS and RS associated to it then MF=2×1/\(\rho^r \). In this study we assume that spectrum is equally shared among BS and RS either in time or frequency so \(\rho^r = \rho^b=0.5 \). Thus, MF is actually the number of parts total spectrum is divided into.

Since in Eq.(22) the \(\zeta \) reflects the expected MCE and thus reflects SE achieved through the use of higher order modulation and coding schemes in coverage area, MF denotes the multiplexing loss due to sectors or RS and SRF denotes the SE achieved through spectrum reuse, hence the above metric represents SE while directly reflecting the effect of key factors and respective tradeoffs highlighted in section II.

B. FAIRNESS

To define a suitable metric for fairness which reflects the effect of MCE, SRF, NSPS and NRPS we build on above derivations and define the metric for fairness and name it Service Profile Fairness as follows:

\[
SPF = 1 / \sqrt{\sum_{l=0}^{L} \left(\frac{MCE_i \times A_l}{A_l} \right)^2}
\]

(SPF characterize fairness among the users in the coverage area of a system by measuring how much the data rates within the coverage area deviates from the average data rate in the coverage area. This deviation depends on the SINR geographical distribution as well as mapping of that SINR to actual data rate achievable by a user. Advantage of this metric of fairness is that it exclusively captures the actual effect of link adaptation which is key factor in determining fairness in future OBCN. Furthermore, this fairness metric is just to all users in the coverage area independent of their location from the BS or RS. This is because it gives the cell edge users judicially higher importance because as area is square function of radius so more area lies farther from the cell center. In case of uniform user distribution this means more users will lie farther from cell center and thus should have naturally larger influence in determining fairness. SPF is maximum i.e.\(SPF = 1 \) when all users can receive at same data rate.

IV. SIMULATION SCENARIO

Since, there are many potential candidate DA’s for next generation ODCN or R-ODCN with different SRF, NSPS and NRPS, So in order to evaluate and compare ESE and SPF and the tradeoff between the them in various DA, total of 26 DA’s with a wide range of SRF, NSPS and NRPS as listed in Table 1 are modeled in system level simulations. For all these possible DA’s \(\zeta \) in Eq. (19) and thus ESE and SPF is evaluated through extensive simulations. \(\zeta \) is evaluated through two different methods. 1)Pragmatic: Based on the SINR thresholds for set of modulation and coding schemes described in LTE standard used in [7], 2)Theoretic:

<table>
<thead>
<tr>
<th>Site to Site Distance</th>
<th>1200m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BS</td>
<td>19</td>
</tr>
<tr>
<td>RS height</td>
<td>10m</td>
</tr>
<tr>
<td>RS Antenna</td>
<td>Omni direction, Gain= 10 dB</td>
</tr>
<tr>
<td>BS Antenna</td>
<td>3GPP model, Gain= dependent on no. sectors</td>
</tr>
<tr>
<td>BS Tx Power</td>
<td>30dBm</td>
</tr>
<tr>
<td>RS Tx Power</td>
<td>24dBm</td>
</tr>
<tr>
<td>Cell Antenna Height</td>
<td>32m</td>
</tr>
<tr>
<td>Shadowing Mean</td>
<td>0dB</td>
</tr>
<tr>
<td>Shadowing Std for BS</td>
<td>LOS=4dB, NLOS=8dB</td>
</tr>
<tr>
<td>Shadowing Std for RS</td>
<td>LOS=5dB, NLOS=10dB</td>
</tr>
<tr>
<td>Fast Fading</td>
<td>3GPP SCM, URBAN_MACRO</td>
</tr>
<tr>
<td>Path loss</td>
<td>As in [1] for micro, macro and LOS and NLOS</td>
</tr>
<tr>
<td>LOS to NLOS breakpoint</td>
<td>300m</td>
</tr>
</tbody>
</table>

Based on Shannon bound i.e. Eq. (4). The major system design parameters used in simulations of various DA’s are given in Table 2. Two tiers of cells are modeled in each DA to consider realistic amount of interference in multi cellular scenario. Other real features like, shadowing, and antenna tilting and appropriate Pathloss models for BS and RS considering both LOS and NLOS conditions similar to [8] are used in order to model a realistic ODCN and R-ODCN propagation environment. In R-ODCN, RS are optimally located at half of inter site distance where the SINR is minimum i.e. where the far end corners of adjacent sectors join.

V. RESULTS & DISCUSSION

In this section first we will discuss the results of ESE & fairness separately to highlight the gains and respective tradeoffs in performances of different DA’s (both OBCN and R-OBCN) offer. Then we will compare the performance of OBCN and R-OBCN in general.

A. ESE of Various DA’s for ODCN

Fig.1 shows the ESE evaluated through extensive simulations of multi cellular scenarios for 12 different DA’s of ODCN. The tradeoff among NSPS, and SRF and MCE can be seen playing its role in the overall ESE of different DA. For ease of discussion while probing into the underlying trends and tradeoffs let’s focus on DA’s 9-12, all with NSPS=6. It can be seen that for DA=9 where full frequency reuse (FR=1) is used, ESE is lowest and gap from Shannon bound is largest. This is due to high inter-sector interference which results in very low \(\zeta \) and hence low ESE. In DA=10, 11 when FR increases to 2 and 3, although SRF decreases from 6 to 6/2 and 6/3 respectively, still the ESE increases. This is because the increase in \(\zeta \) due to decreased interference is more than decrease in SRF. Hence as a net result ESE is larger in DA=10,11 compare to DA=9. But in DA=12 where FR further rise to 6, the loss in ESE due to low SRF (6/6) is much larger then the gain in \(\zeta \) through lower interference. This results in a lower ESE in DA=12 as net result. On the other hand, the gap between practical and Shannon bound based ESE’s monotonically decreases as FR increases in DA’s 9-12 mainly because higher \(\zeta \) is yielded with larger FR due to the decreased interference. Further, results clearly show that, for ODCN, the DA that has potential to yield practically highest ESE is DA=11. Although DA=11 is not among those DA’s that resort to full frequency reuse, but it

<table>
<thead>
<tr>
<th>Frequency</th>
<th>FR</th>
<th>SRPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSPS</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1: Simulation Parameters</th>
</tr>
</thead>
</table>

| Table 2: Various DA’s Architectures Investigated |
still provides highest ESE by optimally trading off the SE achievable through MCE and through SRF and NSPS. It can be further seen in Fig.1 that the gap between the theoretical and practical ESE is minimum for \(DA=8 \) This is because the average interference is minimum in this DA due to low FR and the sector design. This results in to high \(\zeta \) in coverage area and hence the practical ESE reaches closer to theoretical one for this DA. But overall ESE for this DA is low because MF is high due to low spectrum reuse efficiency.

Further comparisons of ESE’s in Fig.1 for DA’s with different NSPS show that by deploying higher number of sectors per site while keeping FR=1, slightly better ESE can be achieved (Compare DA=4 with DA=9 in Fig 1). Although this increases the interference slightly due to increased interference among sectors (compare CDF of SINR for the two DA’s in Fig. 5), but the increase in SRF factor outweighs the decrease in \(\zeta \) in this case. (See Eq. 23)

B. SPF of Various DA’s for ODCN

Fig. 3 show the values of fairness indicator SPF evaluated for the all 12 DA’s of ODCN using Eq. 24. In general it can be noted that in ODCN, SPF increases with increase in number of sectors but it decreases with increase in FR (or in other words decrease in SRF). This is because increasing the number of sectors in general decrease the cell edge interference thus makes SINR’s geographical distribution more uniform in a cell. On the other hand a low SRF has same effect but in different way. A low SRF makes the interfering cells farther, thus making SINR distribution less dependent on distance from the cell center hence more uniform geographically.

C. ESE of R-OB CN

Figure 3, shows theoretical and practical ESE evaluated for various DA’s for R-ODCN. By comparing the ESE’s of R-ODCN with those for ODCN it can be easily seen that RS’s bring huge improvement in ESE. This improvement is due to two reasons. First the gap between the practically achievable and theoretical ESE is reduced significantly in R-ODCN compared to ODCN. This is because of the fact that RS boost SINR distribution more effectively than higher frequency reuse can. This argument can be justified by comparing the SINR distribution of ODCN and R-R-ODCN in Figure 5. The relatively much better SINR distribution in R-ODCN is mainly because of much smaller height and lower transmission power of RS. This makes the interference caused by RS much lesser than caused by the sectors of BS. Secondly, in addition to better SINR distribution and hence higher \(\zeta \), there is a another positive contribution of RS towards higher ESE that explained as follows: Let’s assume 3 RS are working in a cell, the spectrum is divided into two parts for sharing between BS and RS thus reducing the SRF by half only compared to scenario with three sectors as SRF will reduce by factor of 3 in this case. These two reasons make RS more advantageous method to boost ESE because they can boost SINR and thus \(\zeta \) more effectively while causing relatively lesser decrease in SRF compared to FR or NSPS based method of improving SINR. This fact can be further confirmed by comparing the ESE for DA=23 to 26 in Fig 3.

As the FR increases, Fig. 3 shows that SINR improves and thus the \(\zeta \) improves boosting the ESE. But the net ESE decreases because the SRF decreases more rapidly than \(\zeta \) can improve through increase in FR. Finally, it can be seen highest ESE is yielded by DA=23. This is so because it not only resorts to FR=1 to achieve high SRF but also avails better SINR distribution (see Fig=5) than counterpart DA=9 due to the advantages of RS explained above

D. FAIRNESS \(\zeta \) in DA’s for R-ODCN

Fig. 4 shows the SPF for the all 14 DA’s of R-ODCN. It can be seen that, although the trends with respect to NSPS and SRF are same as for ODCN but in general SPF in R-ODCN is significantly lower than that in ODCN. The reason behind this is the drastic change in distribution of SINR brought by RS as can be seen in Fig.5. Span of cdf of SINR in the R-ODCN is much larger than that of ODCN’s. This is because, although RS improve the SINR but not in the whole coverage area. Rather they provide an up shift in SINR in their own small coverage area only, leaving the rest of the coverage area served by sectors of BS unaffected. This increases the standard deviation of SINR distribution and hence the SPF decreases.

E. Comparison of performance of ODCN and R-ODCN

Results in Fig (1)-(4) show that R-OB CN has potential for higher ESE but they have naturally low SPF. Whereas ODCN DA although offer lesser ESE but have much higher SPF. So there is tradeoff between the ESE and SPF which can be exploited by adding RS. Furthermore, higher ESE of R-ODCN in general shows that with RS in place at the cell edges larger SRF without significant decrease in \(\zeta \).

![Figure 1: ESE for various DA’s for ODCN. FR stands Frequency reuse among sectors of same cell. e.g FR=6 means total spectrum is divided in 6 parts and each to be allocated to one sector of same site.](image-url)
We provided a framework to compare the performance of various Deployment Architecture (DA) options for next generation distributed OFDM/OFDMA based cellular network. Gains and respective tradeoffs offered by four major factors of DA i.e. 1) spectrum reuse factors, 2) No. of sectors per site, 3) Number of RS per Site and 4) link adaptation, were investigated in detail. In order to quantify the performance of resulting DA’s including the effect of these factors, we proposed two new performance metrics namely ESE (Effective Spectrum Efficiency) and SPF (Service Profile fairness). Both ESE and SPF were evaluated for wide set of possible DA’s by modeling them in full scale system level simulations. ESE was evaluated using practical LTE’s modulation and coding schemes and as well as theoretical Shannon bound. Numerical results showed that an intelligent design of DA for next generation OFDM/OFDMA based cellular networks can yield significant improvement in spectrum efficiency of overall system even for full load conditions without relying on feedback based or cooperation based interference management schemes. Further, contrary to common notion in ODCN, DA’s with highest spectrum efficiency are not necessarily those that resort on full frequency reuse. In fact, for ODCN a DA with SRF=3, NSPS=6 yield highest ESE of 3.5 bps/Hz/site. And for R-ODCN e.g. LTE advance DA with SRF=1, NSPS=6 and NRPS=3 has potential to yield around 9.5 (bps/Hz/site) which is 170% higher compared to equivalent DA for ODCN.

In future, it will be interesting to investigate the further improvement in SE through efficient scheduling of radio resources with minimal signaling requirements using these optimum DA’s.

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in American English is without an “e” after the “g.” Use the.

REFERENCES

Available: http://www.halcyon.com/pub/journals/21ps03-vidmar