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Abstract—In this paper, we present the use of several 

Biomimetic approaches for Self Organization (SO) in 

heterogeneous scenarios where macrocell and femtocell 

networks coexist. Mainly these approaches are categorized in 

indirect biomimetics and direct biomimetics. Under indirect 

biomimetics we discuss 1) emerging paradigms in learning 

theory and 2) game theory for their potential to enable SO 

solutions in heterogeneous networks. By means of numerical 

results we demonstrate the pros and cons of these indirect 

biomimetic approaches for designing SO in macro-femto 

coexistence scenarios. Furthermore, we demonstrate the use of 

direct biomimetic approaches for designing SO by exploiting 

one to one mapping between a natural SO system and our 

system model for heterogeneous networks based on Outdoor 

Fixed Relays (OFR). Numerical results show that the proposed 

analytical solution can enhance wireless backhaul capacity of 

the OFR based femtocells by adapting the macro base station 

(BS) antenna tilts in a distributed and self organizing manner.  

Keywords— Biomimetics, game theory, machine learning, 

self-organization. 

 

I.  INTRODUCTION  

Biomimetic is a branch of science that investigates natural 

systems aiming at exploiting their working principles for 

improvement in the design and operation of man-made 

systems. In nature, there are myriad of examples of self-

organizing behavior, e.g., ants colonies finding shortest routes 

to food sources, termites collectively building complex 

constructions without using a blueprint, fish shoals organizing 

themselves without a leader, and swarms of fireflies 

synchronously emitting light flashes. The fact that SO is 

originally a bio inspired phenomenon, and the abundance of 

perfect SO in biological systems, makes biomimetics a rich 

paradigm to investigate the constituents and working 

principles of SO for engineering systems.  

 

Since SO has been defined as a fundamental 

cornerstone of future cellular networks [1] - due to the 

impromptu deployment of femtocells in future heterogeneous 

networks [2] - a number of bio inspired techniques have been 

ventured on in the literature to develop SO solutions in this 

context. These techniques include evolutionary heuristics like 

genetic algorithms and neural networks, machine learning, 

cellular automata and game theory.  A detailed survey of these 

techniques can be found in [3]. Broadly speaking, these 

techniques can be classified under two different subcategories 

within biomimetics: the direct and the indirect approach, as 

explained below [4]: 

Direct Biomimetics: In the direct (or top-down) approach, an 

engineering problem is tackled by looking for natural systems 

solving an equivalent problem. The biological solution and its 

principles are then analyzed and re-built in a technical 

application. Examples of the direct approach are the design of 

airplane wings that directly copy the gliding flight of birds or 

design of camera that copies design of human eye etc. 

 

Indirect Biomimetics: In contrast, the indirect (or bottom-up) 

approach of bio-inspired design involves, first, the derivation 

of principles by analyzing natural systems. The principle is 

then abstracted from its biological context and used in the 

technical applications where it could be suitable. Examples of 

such indirect approach are the concept of artificial 

intelligence, which attempts to exploit the human learning 

behavior, or the concept of game theory, which aims to exploit 

the findings from dynamics of a free economy in various 

engineering applications. 

 

The rest of this paper is organized as follows. In section II, 

we discuss and demonstrate the use of two key indirect 

biomimetic approaches, i.e., learning and game theory, and we 

compare their pros and cons through numerical results in a 

macro-femto coexistence scenario. In learning theory, we 

particularly focus on an emerging paradigm of docitive 

learning and demonstrate how it is more promising in 

heterogeneous network scenario compared to conventional 

learning techniques. While the indirect approaches are 

currently more popular in the literature for developing 

solutions for wireless systems, in section III, we present direct 

biomimetics for developing SO solutions for heterogeneous 

networks. To this end, we establish one to one analogy of our 

system model with a SO system in nature that addresses a 

problem analogous to ours. Based on this analogy we 

demonstrate the novel approach of developing SO solution for 

heterogeneous network scenario, by use of direct biomimetics. 

The proposed solution is developed for capacity enhancement 

on the backhaul access links for the Outdoor Fixed Relay 

(OFR) scenario, by SO of macro Base Station (BS) antenna 

tilts. Numerical results show that substantial increase in 

spectral efficiency can be achieved through SO of BS antenna 

achieved by proposed solution, without relying on heavy 

signaling.  Finally, Section IV summarizes the main 

conclusions of the work. 



 

 

II. INDIRECT BIOMIMMETIC APPROACHES 

A. Implementation of SO in distributed wireless systems in 

general, and in femtocells networks in particular, can be 

realized by taking advantage of the literature proposed by 

machine learning and game theory communities. In this 

section we discuss two solutions based on these techniques 

and we assess them through performance results in macro-

femto coexistence scenario.Learning based approached for 

SO. 

Learning can be defined as the capability of drawing 

intelligent decisions by self-adapting to the dynamics of the 

environment, taking into account the experience gained in past 

and present system states, and using long term benefit 

estimations. Learning is adamantly driven by the amount of 

information available at every femtocell. Complete 

information about neighbors can significantly improve 

performances with respect to the case of partial observability, 

but the signaling burden over the backhaul may lead to the 

lack of scalability of the proposed scheme. As a result, a 

tradeoff should be achieved, keeping in mind that the 

capability of making autonomous decisions is a desirable 

property of a self-organized network. 

 

A particularly interesting framework in realistic 

decentralized wireless networks is the literature of 

reinforcement learning (RL) [1]. The reason is that RL 

provides model free and online learning features, which makes 

it suitable for taking decisions in realistic wireless settings 

characterized by a high degree of dynamism due to e.g., 

lognormal shadowing, fast fading, mobility of users, multiuser 

scheduling, random femtocell nodes activity patterns, etc. RL 

schemes, such as classical Q-Learning, possess a firm 

foundation in the theory of Markov Decision Processed 

(MDPs) and can be shown to optimally perform in situations 

where only one decision maker is present in the scenario (i.e. 

single-agent learning). In a distributed scenario, such as the 

femtocell case, however, (1) the intelligent decisions are made 

by multiple intelligent and uncoordinated nodes; (2) the nodes 

partially observe the overall scenario; and (3) their inputs to 

the intelligent decision process are different from node to node 

since they come from spatially distributed sources of 

information. This distributed system can be mapped onto a 

multi-agent system, which consists of multiple nodes who are 

similarly and simultaneously adapting. This may generate 

oscillating behaviors that not always reach an equilibrium. The 

dynamics of learning may thus be long and complex, with 

complexity increasing with an increasing observation space.  

 

A possible solution to speed up the learning process and to 

create rules for unseen situations, is to facilitate expert 

knowledge exchange among learners [6][7]. We introduced 

then in [8] an emerging framework for femtocells, referred to 

as docition, from “docere” = “to teach” in Latin, which relates 

to nodes teaching other nodes. This concept perfectly fits a 

femtocell network scenario, where a femtocell is active only 

when the users are at home, so that it can take advantage of 

the decision policies learnt by the neighbor femtocells, which 

have been active during a longer time. Depending on the 

degree of docition among nodes, the following cases can be 

distinguished:  

1) Start-up Docition: 

Docitive radios teach their policies to any newcomers joining 

the network. In this case, again, each node learns 

independently; however, when a new node joins the network, 

instead of learning from scratch how to act in the surrounding 

environment, it learns the policies already acquired by more 

expert neighbours. Gains are due to a high correlation in the 

environments of adjacent expert and newcomer nodes. 

Policies are shared by exchanging Q-tables. 

2) IQ-Driven Docition  

Docitive radios periodically share part of their policies with 

less expert nodes, based on the degree and reliability of their 

expert knowledge. Policies are shared by exchanging (a 

weighted version) of the entire Q-table or rows thereof, 

corresponding to states that have been previously visited.  

3) Performance-Driven Docition:  

Docitive radios share part or the entirety of their policies with 

less expert nodes, based on their ability to meet prior set 

performance targets. Example targets are maximum created 

interference, achieved capacity. erfect Docition: the multi-

user system can be regarded as an intelligent system in which 

each joint action is represented as a single action. The optimal 

Q-values for the joint actions can be learned using standard 

centralized Qlearning. In order to apply this approach, a 

central controller should model the Markov decision process 

(MDP) and communicate to each node its individual 

actions.Alternatively, all nodes should model the complete 

MDP separately and select their individual actions; whilst no 

communication is needed here, they all have to observe the 

joint actions and individual rewards. Due to an exponential 

growth of the states, this approach is typically not feasible. 

B. Game theoretic approaches for SO 

When information exchange among femtocells is allowed, the 

strategic coexistence among femtocells can be modeled using 

tools from evolutionary game theory (EGT) [11][12] which 

was explored as a means of mitigating interference towards 

the macrocell tier. EGT was shown to provide relatively high 

gains as compared to classical learning algorithms (Q-learning 

among others), by relying on a HeNB-GW, which acts as a 

semi-centralized entity through which femtocells exchange 

information in a two-way communication fashion (see [10] for 

more details). Yet another game theoretic approach is 

fictitious play (FP) where femtocells have complete and 

perfect information, i.e., they know the structure of the game 

and observe at each time t  the power allocation vector taken 

by all other femtocells Formally speaking, FP can be written 

in a strategic form { } { }( )
KkkKkk
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uAKg

∈∈
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K denotes the set of players (i.e., FBSs). For all Kk ∈  the 

set of actions of FBS k is the set of power allocation 

vectors { }{ }NnLlqA k

nl

kk ∈∈= ,,...,0:),(
, where 

{ }kk L,...,1L = and NLk ∈ is the number of discrete power 



 

 

levels of FBS Kk ∈ . The power allocation vector when FBS 
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,)( be the empirical probability 

distribution over the set kA− observed by player k . In what 

follows, the vector )(tf k represents the belief of player 

k over the strategies of all its corresponding counterparts. 

Hence, at each time t , and based on its own beliefs, )(tf k
, 

each FBS k chooses its action 
),()( nl

kk qtp = , i. which 

maximizes its expected utility function. 

It can thus be implied that by playing FP, players become 

myopic, by building beliefs of strategies used by all other 

players, and at each time t , players choose the action that 

maximizes their instantaneous expected utility.  

On the other hand, when information exchange among 

femtocells is no longer possible, different decentralized 

learning algorithms can be adopted by femtocells so as to 

mitigate their interference toward the macrocell tier. Among 

these learning algorithms is the classical Q-learning which 

was studied in greater details in [9]. In short, every FBS first 

carries out an exploration phase in which it learns by 

interacting with the environment in a trials-and-errors manner. 

After building its Q-table, and provided that the network does 

not dramatically change, each FBS pick the strategies that 

maximize the observed rewards over the interaction time of 

the players. 

C. Performance Evaluation Game theoretic and Learning 

Based approach 

In what follows, we compare performance results obtained 

through classical Q-learning and EGT, bearing in mind that 

contrarily to Q-Learning which is able to work in autonomous 

manner, or with limited feedback through the X2 interface, 

EGT requires a centralized controller to gather, process, and 

broadcast information about the agents. We evaluate 

performances in a macrocell scenario with radius 500=mR , 

underlaid with K femtocells of radius 20=fR , transmitting 

over N = 8 sub-carriers. We assume that femtocells have L = 3 

transmit power levels. The minimum SINR of the macrocell 

UEs is set to 3 dB for each sub-carrier. The macro BS 

transmission power is 43 dBm, and the maximum femto one is 

10 dBm. The considered path-loss model is 3GPP compliant. 

We also assume fast fading and log-normal shadowing with 

standard deviation of 8 and 4 dBm for outdoor and indoor 

communications, respectively. The discount factor and 

exploration probability are set to 0.95 and, 0.5 respectively. 
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Figure 1: Convergence of the RL learning algorithms and their 

impact on the average femtocell sum-rate for K=50 femtocells and 

N=8 sub-carriers. 
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Figure 2: Effect of femtocell density on the average femtocell sum-

rate, for different learning algorithms. 



 

 

In Figure 1, we plot the average femtocell sum-rate for 
K=50 FBSs underlying one macrocell over N=8 sub-carriers, 
highlighting the convergence behavior for different learning 
algorithms. It can be noticed that the replicator dynamics, 
fictitious play, Q-learning schemes eventually converge to 
some steady state. Moreover, the fictitious play showcases the 
highest sum-rate, whereas the classical Q-learning needs an 
exploration phase until convergence is eventually reached. On 
the other hand, Figure 2 plots the impact of the femtocell 
density on the average femtocell sum-rate for the different 
learning algorithms, for K= 50, 100, 150, 200, 250 femtocells. 
A general decline in performance is perceived as the number of 
femtocells increases, which reflects the interference-limited 
nature of the network. Nonetheless, and quite interestingly, we 
see that the rate of decrease in performance is not the same for 
all algorithms. In particular, for K=250, the femtocell average 
sum-rate of around 5 bps/Hz is obtained using replicator 
dynamics and fictitious play, whereas approximately 4 bps/Hz 
is obtained with Q-learning. Convergence performances of Q-
Learning can be improved by docition, which is shown in [8] to 
be able to improve the speed of convergence and precision of 
classical Q-Learning by up to 34%. 

In addition, Figure 3 shows some performance results with 
respect to docition. Comparing the performance of 1) 
independent learning; 2) start-up docition; and 3) IQ driven 
docition, we observe a sharp improvement in precision of the 
docitive approach. In particular, it represents the 
complementary cumulative distribution function (CCDF) of the 
variance of the average SINR at the control point with respect 
to the set target of 20 SINR dB. It can be observed that due to 
the distribution of intelligence among interactive learners the 
paradigm of docition stabilizes the oscillations. At a target 
outage of 1 %, for instance, we observe that the IQ driven 
docition outperforms the start-up docition by a factor of two, 
and the independent learning algorithm by about an order of 
magnitude. This corroborates that docition facilitates a 
completely distributed and autonomous networking operation. 
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Figure 3: CCDF of the average SINR at macro user. 

III. DIRECT BIOMIMMETIC APPROACH FOR SO 

In this section we present the use of direct biomimetic 

approaches to develop a novel SO framework for spectral 

efficiency enhancement on the access link between OFR and 

their donor Base Station (BS) through adaptation of system 

wide BS antenna tilts in a distributed manner.  

   The rest of this section is organized as follows. First we 

present the system model and problem formulation. Then a 

case study of SO system in nature is presented to describe how 

a solution to a similar problem is achieved in the natural 

system through SO. Same steps are applied to our problem by 

exploiting the one to one mapping between the two systems 

and SO solution is thus designed for our problem. Preliminary 

numerical results are also presented to demonstrate the gain 

proposed SO solution can achieve without relying on global 

coordination. 

1) System Model and Problem formulation 

We consider a sectorized multi cellular network with each 

base station having three sectors and each sector containing 

one OFR, as shown in Figure 5. Let N  denote the set of points 

corresponding to the transmission antenna location of all 

sectors and K  denote the set of location points (e.g. 

representing location of relay station (RS)) in the system. The 

geometric Signal to Interference Ratio (SIR) perceived at a 

location k  being served by 
th

n  sector can be given as:  
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where P  is transmission power, d  is distance α  and β  are 

pathloss model coefficient and exponent respectively. G  is 

the antenna gain and for 3GPP and LTE and LTE-A it can be 

modeled as in [13] i.e. 
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where θ  and φ  are vertical and horizontal angles, from 
thn  

sector to 
th

k  location. Subscripts ah,  and v  denote 

horizontal, azimuth and vertical respectively. Subscript 

denotes the tilt angle of particular sector antenna. B  

represents beamwidth and λ  is weighting factor to weight 

horizontal and vertical beam pattern of the antenna in 3D 

antenna model [13]. We assume that all the BSs transmit with 

the same power. This assumption is in line with LTE where no 

power control is applied to downlink. For such a scenario, by 

using (4) in (5), the SIR at location of 
thk  user can be 

determined as: 
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For the sake of simplicity, we use the following substitutions:  



 

 

2
2

= 






 −

h

l

a

l

k

v

hvl

k
B

B
c

φφ

λ

λ

 

( ) β
α

−m

k

m

k dh = ;           
2

1.2
= v

v
B

λ
µ

−

 
Note that it can be seen that γ  is a function of vector of tilt 

angles of all sectors i.e. 
N

tiltθ  where |=| NN , but for the sake 

of simplicity of expression we will show this dependency only 

where necessary. Given the small sector size, we safely 

assume that a sector can have at most one randomly located 

OFR within it. Given the system model and assumption, our 

problem can be stated as: optimizing system-wide antenna tilts 

to maximize the aggregate throughput η  at access links of all 

the OFRs by minimizing the interference. Mathematically: 
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(7) 
where S is set of all points identifying locations of all OFR’s. 

2) Design of  SO solution through direct biomimmetics 

For exploiting a direct biomimetic approach we need to look 

for a system in nature that solves a similar problem in SO 

manner. A flock   of common cranes is an excellent case study 

here. The problem it solves can be stated as “optimise flock-

wide flight attributes to maximise the group flight efficiency in 

the flock by minimising the air drag.” Replace flock with 

system, flight attributes with antenna tilts, flight efficiency 

with spectral efficiency, and air drag with interference; the 

two problems can be seen to be analogous providing 

opportunity for direct biomimetics to be exploited.  Next step 

is to find out the underlying via flock of common cranes 

achieves a SO solution to its problem. For brevity, these steps 

are summarized in Figure 4. 

 
Figure 4: Design and operation of SO in flock of common cranes. 

 

The three steps of designing  self organisation (illustrated in 

Figure 4) when directly applied to our problem can be stated 

as 1) find a simpler approximation of the actual problem that 

can be then 2) decomposed down into locally executable 

solution finally 3) determine the solution of the local sub-

problem. In the following we follow these three steps to 

achieve a novel self organising solution for our problem in (7). 

In order to obtain simpler approximation we explore the 

analogy further and indentify that while controlling their flight 

attributes each bird only observes its two immediate neighbor 

birds and do not directly consider the behavior of rest of the 

birds in the flock.  With this observation, the problem can be 

simplified as: 
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           (8) 

Where ^ shows the SIR is now dependent on the only 

neighboring two sectors. To accomplish the next step that 

requires decomposition of the system-wide problem into 

simpler local sub-problems, we propose the concept of triplet 

by exploiting the symmetry of our system model. The triplet is 

a fixed cluster of three adjacent and hence most interfering 

and immediate neighbor sectors as shown in Figure 5. Since 

the SIR is already a function of tilts of sectors within triplet 

only, the system wide problem in (8) can be now decomposed 

into local sub-problems for each triplet and can be written as: 
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                         (9) 

This decomposition is similar to the decomposition of system-

wide goal of maintaining V-formation into local tasks of 

cohesion, separation and alignment as shown in Figure 4. Now 

the problem in (9), is a very small scale optimization problem 

compared to that in (7), and therefore can be solved with 

standard techniques e.g. sequential quadratic programming.  

 
Figure 5: Circles indicate OFR’s. Red dashed lines highlight a triplet.  

The execution of this solution in each triplet independently, 

results in achievement of the system-wide simpler goal in (8) 

that in turn manifests the original objective in (9) 

approximately. This whole process is summarized in Figure 5. 

Here aiming for the approximate global objective is similar to 

the fact common cranes often do not achieve perfect V-shape 

but still by maintaining near V-shape they achieve substantial 

gain in spectral efficiency [13]. Similarly in next subsection 

we will show that the proposed solution can yield substantial 

gain while being self organizing at the same time. 
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Figure 6: A use case of direct biomimetic approach 

3) Numerical Results 

In order to assess the potential gain of the proposed solution, 

numerical results for two different set of location of OFRs in a 

triplet are obtained, as shown in Figure 7. 

 

Figure 7: Average spectral efficiency per link within a triplet plotted 

as function of tilt angle of two sectors while third is fixed at 13
0
. 

It can be seen that depending on the location of OFRs, a gain 

in spectral efficiency from 1bps/Hz to 2bps/Hz can be 

achieved on average within each triplet if optimal tilt angle is 

obtained by the proposed solution. This can yield a system 

wide gain in spectral efficiency by SO of antenna tilts within 

each triplet in distributed manner without relying on global 

coordination or central control. The negligible amount of local 

signaling required among the immediate neighboring cells 

within a triplet can be done through X2 interface and it needs 

to be done only when location of OFR is changed. 

IV. CONCLUSIONS 

In this paper, use of directly and indirectly bio inspired 

techniques has been presented for enabling self-organization 

for macrocell and femtocell coexistence. Two key indirect bio 

mimetic techniques, namely learning and game theory, are 

explored and their performance is compared via simulation 

results. Another contribution of the paper is a novel 

demonstration of use of direct biomimetic approaches for 

developing SO for a system-wide antenna tilt non-linear and 

large scale optimization problem. The target scenario 

considers outdoor fixed relay based femtocells coexisting with 

a wireless backhaul to the macro system. Numerical results 

show that substantial gain in spectral efficiency on BS to relay 

station access links can be achieved applying the proposed 

solution that dynamically adapts antenna BS tilts in distributed 

and SO manner according to the relay station locations. 
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