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Abstract—In modern wireless communication systems, radio
propagation modeling has always been a fundamental task in
system design and performance optimization. These models are
used in cellular networks and other radio systems to estimate the
pathloss or the received signal strength (RSS) at the receiver or
characterize the environment traversed by the signal. An accurate
and agile estimation of pathloss is imperative for achieving desired
optimization objectives. The state-of-the-art empirical propaga-
tion models are based on measurements in a specific environment
and limited in their ability to capture idiosyncrasies of various
propagation environments. To cope with this problem, ray-tracing
based solutions are used in commercial planning tools, but they
tend to be extremely time consuming and expensive. In this
paper, we propose a Machine Learning (ML) based approach to
complement the empirical or ray tracing-based models, for radio
wave propagation modeling and RSS estimation. The proposed
ML-based model leverages a pre-identified set of smart predictors,
including transmitter parameters and the physical and geometric
characteristics of the propagation environment, for estimating the
RSS. These smart predictors are readily available at the network-
side and need no further standardization. We have quantitatively
compared the performance of several machine learning algorithms
in their ability to capture the channel characteristics, even with
sparse availability of training data. Our results show that Deep
Neural Networks outperforms other ML techniques and provides
a 25% increase in prediction accuracy as compared to state-of-
the-art empirical models and a 12x decrease in prediction time
as compared to ray tracing.

Index Terms—Pathloss Prediction, Ray Tracing, Radio Propa-
gation Model, Machine Learning.

I. INTRODUCTION

Next generation of cellular networks is anticipated to see a
dramatic growth in connected devices and exciting new vertical
services. Hence, Self Organizing Network (SON) is considered
to be the key enabler to meet the stringent performance re-
quirements in the increasingly complicated process of planning,
operating and optimizing a network. Therefore, a realistic
propagation model that is more accurate than empirical prop-
agation models, such as COST-Hata [1], Stanford University
Interim [2], Standard Propagation Model (SPM) [3] and ITU-R
P.452-15 [4], more computationally efficient than deterministic
models such as ray tracing and sensitive to the variation in
network parameters (e.g. tilt) and environment geography will
be the cornerstone of self-organizing future cellular networks
(5G and beyond). To address the constraints and limitations of
traditional channel modeling methods, Artificial Intelligence
(AI) and Machine Learning (ML) techniques are being con-
sidered as promising viable solutions and have been proven

to be very effective for approximating arbitrary functions with
hidden features. As envisioned in [5], Artificial Intelligence
is going to be indispensable in increasingly complex cellular
networks and can replace classical mathematical models with
a robust data-driven model.

A. Relevant Works

Many studies are presented in the literature for pathloss
prediction in a particular environment using machine learning
based models. Artificial Neural Networks (ANN) have been the
most commonly used pathloss prediction models, particularly
in rural [6] and urban [7] environments, however the input fea-
tures to the ANN model are limited to a particular environment
and unable to scale to other environment settings. The authors
in [8] went one step ahead and used evolutionary algorithms
to find the optimal hyper-parameters of the ANN based model,
but they assumed a uniformly structured simulation area, which
is not the case in practical scenarios. A more recent study in
[9] incorporated features based on clutter maps to differentiate
between different environments, but still unable to capture
the variation in coverage due to the change in geometrical
structure of the propagation path. On the other hand, authors
in [10] compared the performance of several supervised ML
algorithms for estimating cellular networks coverage, using
User Equipment (UE) measurement traces, Base Station (BS)
parameters and geographical information. However, instead
of modeling the pathloss or Received Signal Strength (RSS),
the authors classify the observation area as a good or a bad
coverage area, using a pre-defined coverage threshold.

B. Contributions

To address the limitations of aforementioned studies, we
present a framework for an ML-based 3D propagation model
(See Fig. 1), that is scalable and robust to the variations in the
environment geography. The contributions of this paper can be
summarized as follows:

• A novel set of smart predictors (features) are proposed,
that can characterize the physical and geometric structure
of the environment traversed by a signal in its propagation
path (e.g. indoor distance, outdoor distance, number of
building penetrations in each clutter type).

• Various machine learning algorithms are investigated in
modeling the complex propagation environment especially
in sparse training data scenario, and Deep Neural Network
(DNN) is found to be the most optimal choice.
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Fig. 1. Proposed Framework of an ML-Based 3D Radio Propagation Model for predicting the Received Signal Strength (RSS)

• Performance comparison of the proposed model with
state-of-the-art empirical propagation models and ray-
tracing approach is also provided, which shows a 25%
increase in prediction accuracy as compared to empirical
propagation models and 12x decrease in prediction time
as compared to ray tracing.

The rest of the paper is organized as follows: Section
II explains the proposed system model, starting from data
collection, data pre-processing, feature engineering and a com-
parison of various machine learning algorithms for predicting
RSS. Section III provides the performance comparison of the
proposed model with traditional propagation models and finally
Section IV concludes this paper.

II. SYSTEM MODEL

The proposed framework for a ML-based 3D propagation
model (Fig. 1) uses network information, UE measurement
traces and geographic information of the area, pre-process them
and converts them into right data [5], which is then fed to a
ML model to learn the behavior of received signal strength
(RSS) of a UE in a radio propagation environment.

A. Data Collection

A ray-tracing based realistic commercial planning tool is
used to create a sophisticated network topology (Table I), and
generate different types of raw datasets used in our proposed
framework (See Fig. 2).

1) BS Information: This dataset contains the following
information of all the Base Stations (BSs) in the observation
area: Location: Location coordinates of a BS site. Fig. 2(b)
shows the position of transmitters in the simulation area.
Height: The height of BS antenna above the ground and
building (if any). Azimuth: Azimuth angle (in degrees) of the
BS antenna, which is the direction of antenna w.r.t. North. Tilt:
Tilt angle (in degrees) of the BS antenna, which is basically the
angle below the horizontal plane. Transmit Power: The power
of the radio signal (in dBm) when it’s transmitted from the BS

antenna. Frequency: Carrier frequency used by the BS antenna
for transmission. Antenna Type: The type of antenna used by
the BS transmitter. It is differentiated by beamwidth, antenna
gain etc.

2) Geographic Information: The geographical information
of the propagation environment can be captured using three
different types of geographical datasets. The first dataset is
called Digital Terrain Model (DTM), which provides the earth
terrain altitude (ground height). Fig. 2(c) shows the variation
in ground height in the propagation path between a BS and
UE. Second dataset is called Digital Height Model (DHM),
which provides the building heights (above the ground) in the
observation area. Fig. 2(a) shows the 3D building heights in the
simulation area. The third dataset is called Digital Land Use
(DLU) Map, which provides the clutter (or land cover) type
of each grid in the observation area. These datasets are in a
raster grid format, which means that the whole observation area
is divided into grids (or bins), each grid containing a specific
value. These geographical datasets are routinely used by mobile
telecom industry for their planning and maintenance tasks, and
can be acquired on demand [11].

3) UE Measurements: This dataset contains the following
information of all the UE’s in the observation area: Re-
ceived Signal Strength (RSS) from the serving BS. Location:
Location coordinates of a UE. Timestamp: Time at which
the UE measurement is recorded. Network ID: Information
regarding serving BS ID, Mobile Network Code etc. The
mobile operators can readily use the data from Drive Tests,
Minimization of Drive Test (MDT) reports, crowdsourcing
applications etc. to generate this dataset, without the need for
any new standardization.

B. Data Pre-processing

UE Measurements are pre-processed by cleaning and grid-
ding, before using them for modeling. Data cleaning is done
to handle missing and corrupt values, whereas, Data Gridding
is the process of mapping all UE measurements into unique



(a) 3D Elevation Map (b) 2D Elevation Map (c) Propagation Path between a BS and UE

Fig. 2. Area of Simulation showing (a) Building Heights (b) Transmitter Positions and (c) Vertical Propagation Path

TABLE I
NETWORK SCENARIO SETTINGS

System Parameters Values

Cellular Layout 10 Macrocell sites
Sectors 3 sectors per BS

Simulation Area 3.80 km2

No. of Users in
Simulation Area

9755 users

User Distribution Poisson Distribution
Path Loss Model Ray Tracing

Geographic Information (1-m Resolution GeoData)
Ground Heights (DTM) +
Building Heights (DHM) +
Land Use Map (DLU)

Land Cover (Clutter) Types 15 different classes
BS Transmit Power 43 dBm

Antenna Gain 18.3 dBi
Horizontal Half Power Beamwidth 63o

Vertical Half Power Beamwidth 4.7o

Carrier Frequency 2100 MHz

spatial bins and then averaging the measurements inside each
spatial bin. The advantage of data gridding is two-fold: First, it
handles positioning error in the measurements, and secondly,
it can offset random noise (or shadowing) from the received
signal strength (RSS). As shadowing is modeled by a Gaussian
Distribution with zero mean, thus averaging all measurements
from the same BS, falling in a grid (e.g. 10m x 10m), will give
the expected value of RSS in that grid.

C. Feature Engineering

Feature engineering is a key process in ML, that leverages
domain knowledge to create features which can characterize
the complex target model and greatly enhance its learning
performance. In our study, several smart predictors (features)
are identified (engineered), to better characterize the environ-
ment traversed by a signal in it’s propagation path. The raw
network, UE and geographic datasets, readily available to the
mobile operators, are converted into right data (smart features)
comprising of system as well as propagation environment
features.

1) Propagation Distance: This is the horizontal distance
(in meters) between a UE and it’s serving BS.

2) Horizontal Angular Separation: This is the horizon-
tal angular separation (in degrees) between the BS antenna
boresight and the direction of Line of Sight path to the UE.
This feature captures the attenuation due to horizontal antenna
pattern of the BS.

3) Vertical Angular Separation: This is the vertical angu-
lar separation (in degrees) between the BS antenna boresight
and the direction of Line of Sight path to the UE. This feature
captures the attenuation due to vertical antenna pattern of the
BS.

4) LoS / NLoS State: This tells if the link between BS and
UE antenna is in Line of Sight (LoS) or Non Line of Sight
(NLoS) state. This feature is particularly useful in wireless
channels, as higher RSS is experienced by a UE which is in
LoS with the BS, and vice versa.

5) First Diffraction Point: This is the horizontal distance
(in meters) from a BS to the first diffraction point in the
propagation path between a BS and UE (See Fig. 2(c)). This
features captures the significance of diffracted rays at the
receiver as multiple rays from the same BS are received and the
ray having highest signal strength is selected as the dominant
ray.

6) Last Diffraction Point: This is the horizontal distance
(in meters) from a BS to the last diffraction point in the
propagation path between a BS and UE (See Fig. 2(c)). This
features also tries to learn the behavior of diffracted rays in
the estimation of RSS.

7) Number of Building Penetrations: This is the number
of buildings penetrated by the signal in its direct path between
a BS and UE. This feature characterizes the penetration loss
(dB) experienced by the signal while crossing buildings.

8) Indoor Distance: Horizontal Distance (in meters) in the
direct path between a BS and UE that is passing through
buildings (indoor). This feature characterizes the linear loss
(dBm/m) experienced by the signal in indoor area.

9) Outdoor Distance: Horizontal Distance (in meters) in
the direct path between a BS and UE that is in open area
(outdoor). This feature characterizes the linear loss (dBm/m)
experienced by the signal in open area.



10) Receiver Clutter Type: It is the clutter type (or
land cover type) of the receiver. (For Example: Open, Dense
Buildings, Sparse Buildings, Trees, Water etc.). Each clutter
type has its own effect on the signal and this feature tries to
learn this behavior.

11) Number of Building Penetrations in each Clutter
Type: This is the number of buildings penetrated by the
signal in each unique clutter in the direct path between a BS
and UE. Different clutters can be different types of buildings,
each having different penetration loss (dB). If our observation
area consists of 15 different clutter classes, then this feature
is subdivided into 15 different features, each representing
the number of building penetrations in that respective clutter,
whose sum equals the total number of building penetrations in
the propagation path of that UE.

12) Indoor Distance in each Clutter Type: Indoor Dis-
tance (in meters) covered by each unique clutter in the direct
path between a BS and UE. This feature characterizes the linear
loss (dBm/m) experienced by the signal in different indoor
environments. Again, this feature is subdivided into the total
number of clutters in the observation area, whose sum equals
the total indoor distance in the propagation path of that UE.

13) Outdoor Distance in each Clutter Type: Outdoor
Distance (in meters) covered by each unique clutter in the direct
path between a BS and UE. This feature characterizes the linear
loss (dBm/m) experienced by the signal in different outdoor
environments. Again, this feature is subdivided into the total
number of clutters in the observation area, whose sum equals
the total outdoor distance in the propagation path of that UE.

D. Machine Learning Models for RSS Prediction

RSS Prediction is essentially a regression problem, where
the smart features are used as inputs to the ML model, to learn
the complex behavior of a signal passing through a wireless
channel. Various machine learning regression algorithms are in-
vestigated for their performance comparison in predicting RSS.
A brief overview and insights from each of these algorithms
are also provided to make this paper self-contained. Algorithm
1 explains the process of removing shadowing from the UE
measurements by gridding (averaging all measurements in a
spatial bin) and then training the ML model using the computed
smart features as input and the corresponding expected value
of RSS as output.

1) Linear Regression: Linear Regression is a parametric
model that gives a weight parameter to each feature, so that
the output will be a linear function of features and weight
parameters. It’s not applicable to many real world problems,
such as ours, as it assumes the solution to be linear and features
to be mutually independent.

2) k-Nearest Neighbors: k-Nearest Neighbors (k-NN) is a
non-parametric model, that can handle non-linearity. It predicts
the output by exploring the neighborhood of test measurements.
Output is basically the mean of k nearest data points in the
training data.

3) Decision Tree: Decision Tree is a tree-based algorithm,
with an inverted tree derived from independent variables,

Algorithm 1 Data Grdding and Model Training Algorithm
1: for all UE measurements do
2: Map its location to pre-defined grids (e.g. 10m x 10m)
3: end for
4: for each unique grid do
5: for each unique serving BS do
6: Average out the RSS of all users to offset random

shadowing effect
7: Compute a feature vector of smart predictors uti-

lizing all the raw datasets
8: end for
9: end for

10: Train the Machine Learning model using all feature vectors
as input and the corresponding RSS value as the output

starting from a root node, where each node splits the instance
space into multiple sub-spaces according to a condition over a
feature, and ending at leaf nodes, where output is predicted.

4) Deep Neural Network: Deep Neural Network (DNN)
algorithm belongs to a special class of machine learning, called
deep learning and creates a multi-layer perceptron (MLP) to
find the input-output associations. Its basic structure consists
of an input layer, output layer and one or more hidden layers
between them, each containing several neurons (or nodes).
Neurons in the input layer equals the number of input features,
whereas output layer consists of one neuron which holds the
prediction output. Number of hidden layers and its neurons are
variable, and depends on the complexity of model it is trying
to learn.

6 7 8 9 10

RMSE (dB)

Linear

K-NN

Decision Tree

Deep Neural Network

100% Training Data 1% Training Data

Fig. 3. Comparison of different Machine Learning Algorithms w.r.t Prediction
Error and Robustness to Sparsity of Training Data, for Modeling RSS

5) Performance Comparison: As shown in Fig. 3, Deep
Neural Networks (DNN) performs the best in capturing the
variance of RSS (or pathloss) in a wireless channel and only
gives a prediction Root Mean Square Error (RMSE) of 6.19
dB, as it is able to learn complex non-linear relationships due
to it’s deep architecture. In our DNN model, 6 hidden layers
each consisting of 32 neurons provide the most optimal results,



any increase or decrease in this number results in over-fitting or
under-fitting on the training data respectively. Rectified Linear
Unit (ReLu) activation function is used in the hidden layers
whereas output layer uses linear activation function.

However, the complex non-linear nature of wireless channel
renders linear regression method unsuitable, as it gives a very
high prediction (RMSE) error of 9.96 dB. Similarly k-NN and
Decision Tree algorithms are unable to generalize well on the
training data and gives a prediction error (RMSE) of 7.16 dB
and 8.89 dB respectively.

All the models are also separately trained on only 1% of
training data, to evaluate their performance in case of data
sparsity, as is the case in real practical scenarios. Overall, DNN
algorithm outperforms others, even with sparse training data,
therefore it is used for further simulations and results.

III. COMPARSION WITH EMPIRICAL RADIO PROPAGATION
MODELS

We compare the performance of our proposed ML-based
3D propagation model using DNN algorithm with traditional
empirical propagation models, as they are currently used in
state-of-the-art commercial planning tools to characterize the
propagation behavior of a radio signal in different conditions.
Empirical models offer a mathematical equation to calculate
the path loss at any given point from the BS, and are based on
data collected in a specific scenario.

A. COST-Hata Model

It is an empirical model for pathloss calculation [1], that
extends the Hata formulae [12] to frequencies upto 2 GHz and
it also takes into account the topo map (DTM) between the
BS and UE and morpho map (DLU) only at the receiver. The
below equation is valid for urban environments with 1.5m UE
height.

Lpath = A1 +A2 ∗ log(f) +A3 ∗ log(hBS) +

(B1 +B2 ∗ log(hBS) +B3 ∗ hBS) ∗ log(d). (1)

Here Lpath is the pathloss (in dB), A1 = 46.3, A2 = 33.9,
A3 = −13.82, B1 = 44.9, B2 = −6.55, B3 = 0 are user-
defined parameters, f is the carrier frequency (in MHz), hBS

is the height of BS and d is the propagation distance between
BS and UE.
For Urban Areas:

L′
path = Lpath − a(hUE).

For Sub-Urban Areas:

L′
path = Lpath − a(hUE)− 2 ∗ (log( f

28
))2 − 5.4.

For Quasi-Open Rural Areas:

L′
path = Lpath − a(hUE)− 4.78 ∗ (log(f))2 + 18.33 ∗ log(f)

−35.94.

For Open Rural Areas:

L′
path = Lpath − a(hUE)− 4.78 ∗ (log(f))2 + 18.33 ∗ log(f)

−40.94.

Where L′
path is the corrected pathloss and a(hUE) is the

correction factor for UE height different from 1.5m.
For Rural/Small Cities:

a(hUE) = (1.1 ∗ log(f)− 0.7) ∗ hUE − (1.56 ∗ log(f)− 0.8).

For Open Rural Areas:

a(hUE) = 3.2 ∗ (log(11.75 ∗ hUE))
2 − 4.97.

B. Stanford University Iterim (SUI) Model

It is derived from the Erceg-Greenstein propagation model
[13] and is valid for 1900-6000 MHz. It also takes into account
the topo map (DTM). It uses the following formula:

Lpath = −7366 + 26 ∗ log(f) + 10 ∗ a(hBS) ∗ (1 + log(d))

−a(hUE), (2)

where, a(hBS) = a− b ∗ hBS +
c

hBS
,

a(hUE) = X ∗ log
(
hUE

2

)
.

Here a(hBS) and a(hUE) are the correction factors for BS and
UE antenna heights respectively, f is the operating frequency
and d is the propagation distance (in km). a = 4.6, b = 0.0075,
c = 12.6 and X = 10.8 are the correction constants which
depend on the terrain type. [2]

C. Standard Propagation Model (SPM)

It is derived from the Hata formulae and is valid for 150-
3500 MHz. It also takes into account the topo map (DTM)
and morpho map (DLU) between the BS and UE. It uses the
following formula:

Lpath = K1 +K2 ∗ log(d) +K3 ∗ log(h′
BS) +K4 ∗ Ldiff

+K5 ∗ log(d) ∗ log(h′
BS) +K6 ∗ h′

UE

+K7 ∗ log(h′
UE) +Kclutter ∗ f(clutter). (3)

Here K1 = 23.8, K2 = 44.9, K3 = 10.89, K4 = 0.19,
K5 = −10, K6 = 0, K7 = 0, Kclutter = 1 are user-defined
parameters, h′

BS and h′
UE are the effective BS and UE heights

respectively, by taking into account the earth terrain. Ldiff is the
diffraction loss calculated by Deygout method and f(clutter)
is the weighted average of the user-specified clutter losses, in
the propagation path between BS and UE. [3]

D. ITU 452 Model

It is based on the ITU-R P.452-15 recommendation [4] and
is valid for 100-500,000 MHz band. It takes into account
the LoS/NLoS state, diffraction, tropospheric scatter, surface
ducting and elevated layer reflection and refraction. It uses the
following formula:

Lpath = −5 ∗ log
(
10−0.2∗La + 10−0.2∗(Lb+(Lc−Ld)∗Fj)

)
+ABS +AUE, (4)

where,

Fj = 1− 0.5 ∗
[
1 + tanh

(
2.4 ∗ θ − 0.3

0.3

)]
.



Here La is the basic transmission loss due to troposcatter, Lb

is the minimum basic transmission loss with LoS propagation
and over-sea sub-path diffraction, Lc is the basic transmission
loss associated with diffraction and LoS or ducting/layer-
reflection enhancements, ABS and AUE are additional losses due
to BS and UE surroundings respectively, Fj is the interpolation
factor to take into account the path angular distance and θ is the
path angular distance. These parameters are further calculated
from equations in ITU-R recommendation P.452-15 [4].

E. Performance Comparison
In Fig. 4, a box-plot representation is used to compare

the performance of our proposed model with state-of-the-art
empirical propagation models, by taking highly precise ray-
tracing based RSS estimates as ground truth. The RSS is
calculated from the empirical models using PUE = PBS−Lpath,
where PUE is the UE’s RSS, PBS is the BS’s transmit power
and Lpath is the pathloss calculated using (1)-(4). We can see
that the predicted RSS using our proposed ML-based model has
much less error as compared to other empirical models, as it’s
leveraging a novel combination of smart features which are not
included in traditional empirical models (e.g. indoor/outdoor
distance).

The performance of our model can even be compared with
highly sophisticated ray-tracing based tools, as it’s much
faster than the latter, a much-complained problem in ray-
tracing based tools, by industry professionals. The preliminary
implementation of this framework has demonstrated a 12x de-
crease in prediction time as compared to ray-tracing approach,
because it only uses the smart features as input to the trained
ML-based model to predict the pathloss, as compared to ray
tracing, which approximates the interactions of all rays with
the neighboring environment to estimate the pathloss, hence
computationally inefficient. Prediction time in our preliminary
implementation can be further optimized to make it more
efficient (for instance, by using parallel computing).

Fig. 4. RSS Prediction Error using different Radio Propagation Models

IV. CONCLUSION

In this paper, we have proposed a framework for an ML-
based 3D propagation model for cellular networks that is
scalable and robust to the variation in environment geography.
To enable this framework, we have identified a novel set of
smart predictors, that can characterize the complex physical
and geometric structure of the propagation environment. Per-
formance comparison of several machine learning algorithms
is done to highlight their prediction accuracy in modeling the
complex wireless channel using the proposed smart predictors
as input features. Our results show that overall Deep Neural
Network algorithm outperforms others even with sparse avail-
ability of training data. The preliminary implementation of this
framework has shown a 25% increase in prediction accuracy
as compared to empirical propagation models, as well as 12x
decrease in prediction time as compared to ray-tracing based
commercial planning tools.
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