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Abstract—Spatio-temporal characterization of user traffic is
the first step in designing, optimizing and automating a mobile
cellular network. While it is well known that voice telephony
follows Poisson distribution, the distribution of SMS and internet
data usage along with voice calls and the factors influencing
the distribution, is still an open question. We characterize the
distribution of multi-faceted cellular traffic while identifying the
factors influencing the parameterization of the distribution. Eight
latent features that play a statistically significant role to char-
acterize the traffic distribution variations over time and space
are determined by leveraging a large real dataset. The features
used to characterize the dynamism of the traffic distribution are
Points of Interest, day of the week, special events and region.
Results show that Generalized Extreme Value distribution best
describes SMS, call and internet activity and it does not change
with spatio-temporal features. Also, traffic distribution is not
stationary. Insights gained from this analysis can pave the way
towards more precise and resource efficient planning, designing
and optimization of future cellular networks.

Index Terms—Big Data, Traffic Distribution, Milano Data,
Distribution Analysis, Network Design

I. INTRODUCTION

The first step and a key component towards planning,
designing and optimizing networks is identification of user
traffic requirements [1], [2] and to find a distribution model
for network traffic. Characterizing the traffic enables us to
determine the operational and capital expenditure, as well
as predict the long-term performance of the network, which
in turn can be used for optimal design of networks and
maximizing the return on investment. This can help network
operators to minimize total cost of ownership, boost network
capacity, maximize coverage, minimize power consumption
and even optimize handover zones [2]. Furthermore, scenarios
such as fault prediction and detecting outages [3] can be
better handled with prior knowledge of the traffic distribution,
which enable better resource allocation and minimize the true
negative impact of outages.

Characterization of user traffic has been done for voice
telephony that has been the foundation of 2G and 3G system
planning. However the characterization of data traffic i.e.,
SMS, internet, Voice over Internet Protocol (VoIP) still re-
mains unexplored. In addition, variability of traffic distribution
over space - Points of Interest (Pol), urban, sub-urban or rural
region, or over time - weekdays, weekends, and special events
remains under investigated. Current understanding of cellular
traffic remains largely limited to two classic findings: first, the
most widely used and oldest traffic models stating that voice
telephony follows Poisson distribution and second, the traffic
volume fluctuates over different times of the day [4].

A. Relevant Work

By harnessing the massive amount of data in mobile net-
works such as Call Detail Record (CDR) that remained largely
unexploited in the past, user traffic distributions can be charac-
terized. For example, some recent studies leverage CDR data
to study mobility patterns [5], specifically in urban areas [6],
anomaly detection [7] and to devise traffic prediction models
[8]. Authors in [9] and [3] use CDR data for cell planning and
resource allocation solutions. The authors in [10] investigate
the use of temperature as a predictor for determining traffic
activity levels. Authors in [11] proposed a shifted gamma
distribution model to characterize internet traffic consisting
of packet arrival time and size without considering spatial
parameters. The authors in [12] utilize the fact that incoming
packet cycles are quasi-periodic to determine anomalies in the
network. However, the question of which distribution of call,
internet and SMS traffic taking into account both spatial as
well as temporal features remains unanswered.

The most relevant to this study are recent works in [3] and
[13]. Using the same data set as used in this study, authors
in [3] built support vector machine based traffic prediction
model for devising an energy saving scheme. This study differs
from [3] and [8] as we do not try to create a traffic prediction
model, since such a model is only applicable to network for
which it is trained and will have to be retrained for each
network, location and time window. Instead we determine
the underlying distribution of the traffic and quantify the
parameterization of that distribution as a function of the factors
that influence the shape of the distribution. Thus, this study
offers more broadly applicable findings compared to specific
traffic prediction model proposed in [3] and other similar
studies. In [13] authors use k-means clustering to cluster
base-stations with respect to activity levels. A spatial analysis
was done to determine that time-correlation of call arrivals
is influenced by time and the location of base stations. It
is concluded that a Poisson process can be used to model
call arrival rates. However, the authors in [13], highlight
the inability of Poisson model to capture traffic burstiness
which characterizes data traffic (as opposed to voice traffic
in old telephone systems). Hence, the results in [13] further
highlight the need for analysis to characterize non-voice traffic
while taking into account spatio-temporal parameters that may
influence the shape of distribution of the modern multi-faceted
cellular traffic. The novelty of this paper lies in the finding that
compared to 80 known distributions, the behavior of SMS, call
and internet activity can be modelled best using Generalized



Extreme Value (GEV) distribution. Furthermore, we quantify
the three parameters that define GEV as a function of spatial
or temporal features such as Pol, non-Pol, urban, sub-urban,
rural areas, weekdays, weekends as well as special events and
holidays.

B. Contributions and Organization

To the best of authors’ knowledge, this paper is the first
attempt to characterize significant features in time and space
that dictate the traffic distribution of SMS, call and internet
values using a large real data set. More specifically, this paper
provides answers to the following questions:

1) What is the distribution that SMS, call and internet
activities follow?

2) Are the distributions of SMS, call and internet traffic
stationary or non-stationary?

3) If the distributions are non-stationary, what are the pa-
rameters that affect the dynamism of these distributions?

4) How significant are these parameters and can they be
quantified?

Section II provides the framework for traffic distribution
analysis. Numerical results and traffic distribution parameters
for various scenarios are presented in Section III. Section IV
concludes the paper.

II. FRAMEWORK FOR TRAFFIC DISTRIBUTION ANALYSIS

A. Data Set

In order to develop a realistic model for traffic distribution,
we have leveraged two real data sets that take into considera-
tion spatial and temporal characteristics:

1) The Milano CDR data set: This extensive CDR dataset
provides SMS, call and internet traffic activity values for
two months. The data has been aggregated to 10-minute
interval times.

2) Trip Advisor’s Point of Interest data set: This data
set provides 357 spots in the form of latitudinal and
longitudinal values that have been classified as histori-
cal, administrative and institutional spots in the city of
Milan. The urban region centered at latitude = 45.4642
and longitude = 9.1900, has a radius of 5.2 miles and
includes 246 Pols. The sub-urban region covers an
additional 2.6 miles and has 85 Pols. The rest of the
region is classified as rural and has 26 Pols.

To capture both spatial and temporal characteristics into the
traffic distribution, the auxiliary data set obtained from Trip
Advisor is super-imposed on the Milan grid using MapBox
[14] as shown in Fig 1.
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Fig. 1: Spatial classification of Milan data set.

B. Data Preprocessing

Two key problems are addressed in data preprocessing:
1. Recovery of missing values 2. Elimination of outliers.

1) Recovering the Missing Data: A major challenge in the
used data, that is often the case with any real data, is that 45%
of the entries are missing. These missing values were noted
to be Missing at Random (MAR). First, a simple method of
imputation for replacing the missing values with the average of
previous and next time slot values was administered. However,
this method did not yield satisfactory results because of
large imbalances in the data. Therefore, a more sophisticated
technique such as matrix factorization was adopted.

To better predict the missing values, we first perform singu-
lar value decomposition (SVD) of the multiply imputed matrix
R to get a lower rank (i.e., smaller/simpler) approximation of
the original matrix [15] as:

R=UXVT (1)

where the diagonal entries of 3 are equal to the singular
values of R, and V7T represents data matrix consisting of
SMS, call and internet values. U denotes the features matrix.
To get the lower rank approximation, we keep only the top 8
features, which include features such as day of the week, Pol
and regions as well as rare features such as special events.
Missing values are then estimated by minimizing the sum of
squared residuals, one feature at a time, using gradient descent
with regularization [16]. The minimization problem in order
to predict the missing values can be formulated as:
min Y (rui — Pu-di)’ (2)

Pu,qi
Y iR

where p,, is a set of row vectors, where each vector consists
of the u-th row of U and q; is a set of column vectors, each
consisting of i-th column of VT. All the vectors p, and q;
are mutually orthogonal.

After random initialization, vectors p,, and q; are updated
using the following rules: p, = py + @.q;(ryi — P.-q;) and
Qi = q; + @.Pyu(ryi — Pu-q;) Where « is the learning rate and
is set to 0.01. The goal is to bring 7,; as close as possible to
the actual values of p,, and q;

Once the vectors p, and q; have been updated, we can
estimate the missing values as:

Pui = Pu-di 3)

This method can handle multi-dimensional data while being
computationally efficient. It also outperforms multiple impu-
tation techniques in particular when the qualitative variables
have many categories and some of them are rare.

2) Detecting outliers and eliminating duplicate values: Tt
is well known that real traffic in cellular network is multi-
scale and even fractal (particularly at locations where special
events occur). Therefore, while pre-processing it was ensured
that any physiological fluctuation from the distribution was
kept. This includes examples such as special events or certain
hours of weekends when traffic pattern differs from regular
days and Pol combined with special events. Data values lesser



than 1.5 times quartile 1 and greater than 1.5 times quartile
3 were dropped while preserving the traffic characteristics.
Next, duplicate values were deleted. Elimination of outliers
and duplicate values reduced the data set size by 22%.

C. Consolidating the data

For ease of processing, data points were aggregated from
10-minute interval data to 1-hour for each bin ID. Analysis
was also done for 3-hour and 6-hour time intervals. However,
the best data compression while conserving the traffic charac-
teristics was observed for 1-hour aggregation.

III. RESULTS AND ANALYSIS

Following the framework in Section II, the traffic distribution
for SMS, call and internet is analyzed for a period of two
months. As an example, Fig. 2 depicts the SMS traffic during
the month of December. As seen in the figure, SMS traffic
activity has a varied pattern. It can also be noted that for 25th
and 31st of December, the SMS activity is exceptionally high.
This motivated us to cluster the user activity for the entire data
(over all cells) into weekdays and special events.
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Fig. 2: SMS traffic pattern for 1 cell over the month of December.

For a robust analysis, the spatio-temporal features result in
a total of 18 combinations as shown in Table I. Values O
and 1 in special events, weekday and Pol columns indicate
false and true values respectively. Values 1, 2 and 3 in the
region column indicate rural, sub-urban and urban regions
respectively. Eighty distributions were tested on each of the
histograms generated. GEV distribution best describes SMS,
call and internet traffic. The Probability Density Function
(PDF) of GEV is given by:

fla) = )+ @

where,

z=p)-1/C
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e @m/e if ¢ =0

and p, o and ¢ are the location, scale and shape parameters
of the GEV distribution repectively.

Table I provides the shape, scale and location parameters
of GEV distribution of SMS, call and internet traffic for
each of the 18 cases. These parameters change over time and
space, highlighting the non-stationarity of traffic distribution.
This table can directly be used by network operators with
similar demographics as Milan to configure various network
parameters based on spatio-temporal characteristics in the area

of interest by first classifying the given area spatially, i.e.,
into rural, sub-urban or an urban region and if it is a Pol
or non-Pol. Next, classification needs to be done temporally
i.e., whether the planning or optimization needs to be done
on a weekend, weekday or on a special event. After the
spatio-temporal classification, relevant rows can be matched
to select the GEV parameters for SMS, call and internet. As
an example, the SMS distribution for one particular case of
non-Pol and rural region on a special event day is illustrated
in Fig. 3.
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Fig. 3: Distribution fitting for SMS activity in cells for non-Pol and
rural area on a special event.

A. Validation

In order to validate our findings, the Kolmogorov-Smirnov
(K-S) test was done. K-S statistics for GEV distribution was
compared to three closest distributions, namely, Generalized
Pareto, Beta and Weibull and is represented as a box-plot
in Fig. 4. As seen in Fig. 4, the variance in K-S values of
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Fig. 4: Box plot of Kolmogorov-Smirnov statistic for different
distributions over all scenarios.

GEYV are the least as compared to the other distributions, thus
validating that GEV is the best fitting distribution over all
combinations of weekdays, weekends, special events, Pol and
regions, making it ideal for traffic distribution modelling. The
values of o, ( and p were determined for all 18 combinations
and are listed in Table 1. While GEV when characterized by
appropriate parameter values as indicated in Table 1 seem to
well represent the traffic distribution for a wide variety of
spatial regions and temporal spans, a further fine tuning of the
distribution parameters may be required for a region whose
underlying demographics and user behavior do not match with
that of Milan. While results show that GEV is the best fit,
Generalized Pareto and Weibull distributions may also be used
in practice with reasonable overall accuracy.



TABLE I: Parameters of GEV distribution of SMS, call

and internet values in different scenarios

SMS CALL INTERNET
Special Events | Weekday | Pol Region s (s s Oc Ce He o Gi i
1 - 0 1 -0.362 | 8.178 -0.137 -0.263 8.274 3.765 -0.467 | 102.680 6.338
1 - 0 2 -0.444 | 6.247 16.141 -0.490 | 6.847 12.992 | -0.581 6.397 198.150
1 - 0 3 -0.583 | 4.869 20.328 | -0.626 | 5.987 14.431 -0.728 10.837 167.843
1 - 1 1 0.248 | 10.376 | 21.593 0.265 | 18.825 15.293 0.162 | 109.857 | 200.369
1 - 1 2 0.190 | 20.364 | 36.032 0.197 | 20.055 | 28.932 0.156 | 212.340 360.42
1 - 1 3 0.188 | 71.532 | 177.720 | -0.152 | 87.115 | 148.170 | 0.144 | 628.440 1804.5
0 1 0 1 -0.488 | 7.543 15938 | -0.498 | 9.436 11.650 | -0.072 45.77 52.053
0 1 0 2 -0.605 | 10457 | 21.698 | -0.644 | 10.821 19.084 | -0.642 | 74.066 205.540
0 1 0 3 -0.825 | 16.967 | 45.852 | -0.746 | 13.875 30.567 | -0.129 | 105.764 | 260.782
0 1 1 1 0.013 16.764 | 22.347 0.097 8.433 14.256 0.372 | 76.1857 | 201.389
0 1 1 2 0.166 | 20.181 28.240 | -0.359 | 12.556 13.277 0.701 187.355 329913
0 1 1 3 0.389 | 44.051 57.327 0.185 | 19.949 | 76.739 | -0.379 | 336.620 | 410.840
0 0 0 1 0.037 3.549 6.692 0.148 4.815 7.173 -0.036 | 42.165 54.209
0 0 0 2 -0.046 | 6.158 16.214 | -0.049 | 6.921 12.927 0.057 64.269 195.460
0 0 0 3 -0.189 | 8.274 20.991 0.498 | 10.937 15.484 0.195 101.389 | 232.295
0 0 1 1 0.357 | 11.543 | 28.163 0.396 | 14.844 | 21.773 0.193 114.054 | 248.185
0 0 1 2 0.198 | 19.893 | 35.546 0.192 | 19.732 | 28.193 0.164 | 204.410 | 352.290
0 0 1 3 0.181 | 71.056 | 178.560 | 0.043 | 86.236 | 148.770 | 0.142 | 624.640 | 1805.400

IV. CONCLUSION

In this paper, we have characterized the distribution of user
traffic by using real CDR dataset from Telecom Italia, Trip
Advisor’s Pol data and public calendars for Milan, Italy. Ex-
tensive analysis on the fused dataset shows that network traffic
distribution for SMS, call and internet for all combinations of
spatio-temporal features follows GEV distribution. The results
of this study can be used to predict, quantify and manage
traffic in an area of interest. The insight gained can be used to
optimize several aspects of networks like optimal base station
placement, switching on and off cells for energy saving and
various other self organizing network functions.
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