
A User Centric Self-optimizing Grid-based approach 
for Antenna Steering Based on Call Detail Records 

Naim Bitar, IEEE, Ali Imran, IEEE, Hazem Refai, IEEE. 
School of Electrical and Computer Engineering 

The University of Oklahoma 
Tulsa, USA. 

Email: {naimbitar, ali.imran, hazem}@ou.edu       
 

Abstract— In this paper, we propose a user centric network 
parameter optimization approach that utilizes the information 
contained in subscriber call detail records generated in a cellular 
network. To be able to maximize average user throughput on a 
cell level, we perform optimization of sector azimuth angles based 
on user centric weighted grids. The grid pattern is formulated by 
identifying spatially distributed points that correspond to user 
activity quantified by user location and service utilization 
information obtained from the call detail records.  In this study, 
we present numerical and cell level simulation over a system of 
30 cells to evaluate the proposed solution. In comparison to an 
optimal brute-force method that takes into account the location 
of every user to optimize the azimuth angles in a cell, we show 
that the proposed grid based self-optimization approach yields 
matching results in performance with substantial reduction in 
computational complexity.   

Keywords— (Self–optimization, Grid-based, SON, azimuth) 

I.  INTRODUCTION 
As the path towards 5G evolves, it is envisioned that 

harnessing the vast amounts of underutilized data present in 
cellular networks can provide operators with valuable insights. 
These insights will have a profound effect on improving 
performance and reducing costs. Big data empowered Self 
Organizing Networks (BSON) [1], is a recently introduced 
paradigm that is envisioned to fundamentally change the way 
networks are operated, managed and maintained.  The key idea 
in BSON is to exploit the deluge of data available in emerging 
and future cellular networks to create end-to-end network 
intelligence and then use that intelligence to empower the 
decision making process at the SON engine [1].  Building on 
the BSON framework, in this paper we propose a simple 
approach to improve the cellular system post-deployment 
optimization process, by exploiting one continually generated 
stream of data mainly used for billing purposes in cellular 
networks; subscriber call detail records (CDRs). We propose 
the extraction of location information from data records 
generated by subscriber activity and logged as CDRs. The 
location information is mapped onto spatially distributed points 
superimposed on a map of region of interest (ROI). The ROI is 
in turn divided into grids. Each grid is then assigned a weight 
proportional to the user density or capacity demand generated 
within that grid and inferred from the CDR data, thereby 
making the optimization solution user centric. The user centric 
weighted grids are then used to optimize selected network 
configuration parameters. The proposed CDR based Self 
Optimization approach is hereafter referred to as Grid-based 
Self Optimization using Data record (GSOD).  We believe the 

significance of GSOD is threefold. First GSOD makes the 
optimization process user centric by exploiting CDR data 
records present in any cellular network. The second advantage 
of GSOD is that the concept of dividing ROI into grids 
effectively reduces the complexity of the problem from having 
to optimize cell parameters while considering every user, to 
optimize for a far less number of grids in a cell. This 
simplification enables the implementation of GSOD in online 
fashion with lower signaling overhead and computational 
complexity. Since in GSOD the size of the grid offers a 
tradeoff between complexity of the solution and the potential 
performance gain, we present a method to determine optimal 
grid size for a given user distribution. Thirdly, GSOD serves as 
a framework which can be exploited for a variety of cell 
parameter optimization processes. In this paper, we use sector 
azimuth angle as a case study to evaluate the proposed 
framework solution. We compare the results attained for cell 
azimuth optimization using GSOD to results achieved by 
optimizing cell azimuth angles for every individual user in the 
cell, a method we hereafter refer to as the brute-force method.  

The rest of this paper is organized as follows: In section II 
we present related work previously done in this domain to 
establish the novelty of this work. In section III, we present the 
system model, our assumptions and the mathematical 
formulation of the problem. In section IV, we evaluate the 
proposed GSOD framework solution numerically and by 
simulation for two cells. Finally, in section V we present 
results of implementing our proposed solution to all system 
cells and discuss the gain GSOD achieves. Section VI 
concludes the paper. 

II. BACKGROUND 
The pre-deployment planning and post deployment 

optimization process in emerging and future cellular networks 
are expected to be more user centric than their predecessors. A 
user centric approach is a key methodology of ensuring 
network design meets user’s expectations and quality of 
experience requirements [2]. Accordingly, authors in [3] 
attempted to address the issue of tilt optimization suggesting a 
user focused framework that divides a cell into concentric 
semi-circles called regions, where a scheduler would select one 
out of a finite set of tilts and vertical half-power beam widths 
(HPBWs) for a given user distribution attached to the base 
station depending on the received signal strength. Authors in 
[4] used the notion of Center of Gravity (CG) to simplify the 
representation of a given user distribution and user activity 
profile in a cell. They used their concept of CG in forming an 
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analytical framework for distributed self-organization of base 
station (BS) tilts. Another work involving user centric network 
parameter optimization is [5] where authors proposed a method 
to assist in handoff decisions using historical geo-tagged signal 
strength data and location information. In addition to studies 
that have used a user centric network parameter optimization 
approach, a number of studies that have optimized antenna 
parameters such as azimuth without particularly using a user 
centric approach are also relevant. For example, metaheuristic 
techniques such as simulated annealing [6] and Taguchi's 
method [7], as well as mathematical models such as in [8] have 
been used to find optimal values of azimuth angle for increased 
system capacity. However, emerging and future cellular 
networks differ from their predecessors in that future network 
operators can have access to accurate subscriber location 
information, in addition to numerous user specific data streams 
as enlisted in [1] and [9]. CDRs, which include an array of 
newly integrated fields in LTE and LTE-A, include user related 
information, which can be a valuable tool for optimizing 
cellular networks [1]. 

The novelty of this work is the utilization of user location 
information stored in CDRs that act as a basis for cell 
parameter optimization. Moreover, a new method has been 
proposed for implementing the optimization process, by 
substituting individual user locations mapped from CDRs, with 
corresponding weighted grid centroid locations and then 
optimizing accordingly. Furthermore, we propose a method to 
optimize grid size. This offers a tradeoff between computation 
complexity and gain of the optimization method. To the best of 
our knowledge this paper is first to present such an approach 
and implement it for sector azimuth angle optimization as a 
case study. 

III. SYSTEM MODEL, ASSUMPTIONS AND PROBLEM 
FORMULATION 

For this study, we consider a sectorized cellular network, 
where each BS has three sectors. The sector azimuths are 
initially set at 120 degrees apart. The rotation of one sector 
azimuth is independent of the other sectors in the cell. Hence, 
rotating any azimuth will affect the SINR experienced in all 
other sectors. Mechanical and electronic steering solutions can 
be used for remote rotation similar to [10]. As the CDRs are 
continually generated in accordance with subscriber activity, 
location points are added to a user map. This map is arranged 
into equal size square grids. Each grid is assigned a weight 
based on the number of users located inside it. Optimization of 
azimuth angles in a cell are based on grid weights, thus 
different grid sizes, yield different weights and in turn affect 
the optimization of the azimuth angles. We begin our proposed 
solution by optimizing the grid size. 

A. Grid size optimization 
The grid optimization problem is a trade-off between 

resolution and computational complexity. Decreasing grid area 
size increases resolution but also increases solution 
complexity. The term resolution refers to the ability of 
extracting detail from the gridded map formed of element 
location points. The smaller the grid size, the more individual 
location points can be discerned, thus, the higher the 

resolution. However, a larger grid size reduces the number of 
points for the optimization process, thus, reducing the 
complexity. To solve this problem that has two contradicting 
objectives we introduce the following assumptions and 
formulation: Let Acell represent the sectorized cell area for 
which the optimization problem is being solved, 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  be the 
area of a sector and 𝑥𝑥 represent the length of the side of the 
grid. Considering the distribution of user locations on the 
gridded map to follow a clustering operation where cluster 
child points (user locations) are geographically distributed 
according to a Poisson Point Process (PPP) Φ of intensity 𝜆𝜆𝑠𝑠 
over ℝ2. According to [11], we define G(λs, x) = e−λsx2  as a 
resolution function. Maximizing this defined resolution 
function will decrease the grid area size 𝑥𝑥2, effectively 
increasing resolution. The complexity of the grid optimization 
problem is proportional to the number of grids. Accordingly, 
we define a complexity reduction function as  𝑥𝑥2

Acell 
 . 

Maximizing the complexity reduction function, increases the 
area size of the grid 𝑥𝑥2, effectively reducing complexity. The 
grid optimization problem can now be given as the tradeoff 
between complexity and resolution as: 

 Ω(Acell, λs, x) =
𝑥𝑥2

Acell 
e−λsx2 ,                              (1) 

where λs  �users
m2 � is the intensity of child points (users) in the 

cluster. Given our assumption of a sectorized cellular network, 
we add a constraint that the maximum grid area size cannot 
exceed the area of a sector.  Thus, the grid optimization 
objective function can be stated as: 

argmax
x2∈[0,Asector]

 Ω(Acell, λs, x) =
𝑥𝑥2

Acell 
e−λsx2 .                     (2) 

As weights are assigned to each grid, we define a weight 
variable for grid g ∈ 𝔾𝔾; the set of all grid centroid points as:  

                   wg =
Λg(n ∈ 𝑁𝑁)

𝑁𝑁
,                                       (3) 

where N is the total number of users in the cell, and Λg(n) is a 
counting operator for the number of users in gth grid. The 
defined weight variable will subsequently be used in azimuth 
angle optimization introduced in the next subsection. 

B. Azimuth angle optimization 
Let B denote the set of points corresponding to all 

transmission antenna locations in a cell and 𝐴𝐴 denote the set of 
all azimuths in a sectorized cell. The geometric SINR for grid 
centroid g ∈ 𝔾𝔾 associated with sector b ∈ B can be given as: 

γgb =
𝑃𝑃𝑏𝑏𝐺𝐺𝑔𝑔𝑏𝑏𝐺𝐺𝑔𝑔𝛿𝛿𝑔𝑔𝑏𝑏𝛼𝛼�𝑑𝑑𝑔𝑔𝑏𝑏�

−𝛽𝛽

𝑇𝑇𝑇𝑇 + ∑ 𝑃𝑃𝑏𝑏′𝐺𝐺𝑔𝑔𝑏𝑏
′𝐺𝐺𝑔𝑔𝛿𝛿𝑔𝑔𝑏𝑏

′𝛼𝛼�𝑑𝑑𝑔𝑔𝑏𝑏
′�−𝛽𝛽∀𝑏𝑏′∈𝐵𝐵/𝑏𝑏

,                    (4) 

where 𝑇𝑇𝑇𝑇 is the thermal noise, {/} is an exclusion operator i.e. 
B/b means all sectors in set 𝐵𝐵 excluding sector 𝑏𝑏. α and β are 
respectively the path loss coefficient and exponent used to 
model a generic path loss model. δgb, δgb′are shadowing 
coefficients at point g from the respective sectors b and b’.  



 
Fig. 1 - Illustration of the geometrical definitions used in the analysis. 

Gg
b is the antenna gain perceived at the gth grid from the  bth 

sector. Respectively, for 3GPP LTE the three dimensional 
antenna pattern can be modeled as in [12]. Thus the perceived 
antenna gain at location (g) is expressed as 

Gg
b = 10

0.1

⎝

⎜
⎜
⎜
⎛λv�Gmax−min�12�

ψgb−ψtilt
b

Bv
�
2

,Amax��+ 

λh�Gmax−min�12�
ϕgb−ϕab

Bh
�
2

,Amax��
⎠

⎟
⎟
⎟
⎞

.         (5) 

As shown in Fig. 1, ψg
b is the vertical angle at the bth sector in 

degrees from the reference axis (horizon) to the grid point g. 
ψtilt
b  is the tilt angle of the bth sector. ϕg

b is the angle of the 
gth grid from the horizontal reference axis (north) at the bth 
sector. Bh and Bv represent the horizontal and vertical beam 
widths of the sector antenna respectively, and λh and λv 
represent weighting factors for the horizontal and vertical 
beam pattern of the antenna in the 3D antenna model. Gmax 
denotes the maximum antenna gain in dB at the bore sight of 
the antenna while  Amax denotes the maximum antenna 
attenuation in dB at the sides and back of the bore sight of the 
antenna. Values of  Gmax and Amax are the same for the 
horizontal and vertical radiation pattern. We further simplify 
this model without the loss of generality by omitting Amax and 
assuming Gmax is 0 dB. Nevertheless, this assumption will be 
removed in the simulation and numerical analysis parts. The 
simplified antenna model can be written as: 

𝐺𝐺𝑔𝑔𝑏𝑏 = 10

−1.2

⎝

⎜
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⎟
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.                          (6) 
We assume our network is operating at full load with 
frequency reuse reducing out-of-cell interference. Power 
allocation across all subcarriers is equal and cell sector 
antennas are collocated on a center mast. This analysis can be 
extended to mmWave future networks by applying mmWave 
path loss models and massive (user-specific) beamforming. 
For ease of expression, we will use the following contractions: 

        

⎩
⎪
⎨

⎪
⎧

  
𝜑𝜑𝑔𝑔𝑏𝑏 =

𝐵𝐵ℎ2𝜆𝜆𝑣𝑣
𝐵𝐵𝑣𝑣𝜆𝜆ℎ

�𝜓𝜓𝑔𝑔𝑏𝑏 − 𝜓𝜓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏 �2
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−1.2𝜆𝜆ℎ
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⎪
⎬

⎪
⎫

.                       (7) 

With the aforementioned assumptions taken into 
consideration, the SINR in (4) can now be approximated as a 
SIR function of azimuth angles as follows: 

𝛾𝛾𝑔𝑔𝑏𝑏(𝜙𝜙𝑎𝑎𝑏𝑏) =
10𝜅𝜅�𝜑𝜑𝑔𝑔

𝑏𝑏+�𝜙𝜙𝑔𝑔𝑏𝑏−𝜙𝜙𝑎𝑎𝑏𝑏�
2
�  

∑ 10𝜅𝜅�𝜑𝜑𝑔𝑔
𝑏𝑏′+�𝜙𝜙𝑔𝑔𝑏𝑏

′−𝜙𝜙𝑎𝑎′
𝑏𝑏′�

2
�

∀𝑏𝑏′∈𝐵𝐵/𝑏𝑏 ∀𝑎𝑎′∈𝐴𝐴/𝑎𝑎

,        (8) 

where 𝜙𝜙𝑎𝑎𝑏𝑏 refers to the azimuth angle for sector 𝑏𝑏 currently 
serving the grid centroid (g). 𝜙𝜙𝑎𝑎′𝑏𝑏′ are the azimuth angles of all 
other sectors 𝑏𝑏′ ∈ 𝐵𝐵/𝑏𝑏 causing interference. Our objective is 
to find the optimal azimuth angles for all sectors that yields 
the maximum average user throughput for all subscribers in a 
single cell simultaneously. ∀𝑔𝑔 ∈ 𝔾𝔾,∀𝑏𝑏 ∈ 𝐵𝐵, mathematically 
we express this as a function of all azimuths of all sectors, for 
every individual grid g covered by sector b, given as follows: 

argmax
𝜙𝜙𝐴𝐴𝐵𝐵  

  𝜂𝜂 (𝜙𝜙𝐴𝐴𝐵𝐵) = �ℋ𝑤𝑤𝑔𝑔 log2 �1 + �𝛾𝛾𝑔𝑔𝑏𝑏(𝜙𝜙𝐴𝐴𝐵𝐵)�� ,            (9)  

where ℋ refers to the bandwidth. The SIR expression in (8) is 
a function of azimuth angles of all sectors in the cell. The 
formulation in (9) is a nonlinear multi variable optimization 
problem. Maximization of the objective function is to be 
solved simultaneously for all sectors in a cell for every grid 
point g. 

IV. OPTIMIZATION FRAMEWORK EVALUTATION 
Evaluating the performance of the proposed solution using 

simulation and the mathematical objective functions presented 
in section III, we compare our proposed GSOD method with 
the aforementioned heuristic brute-force approach collectively 
for grid and azimuth optimization. For simulation, a 
MATLAB® program has been written to generate user voice 
and data CDR’s. Users are scattered based on a Matern cluster 
point process (MCP) [13]. We begin by optimizing the grid 
size, and then illustrate azimuth angle optimization for two 
separate cells. While the azimuth optimization results do not 
yet reflect the entire system of cells considered, they are 
readily obtainable from the aforementioned formulas and 
serve the purpose of aiding the validation of our proposed 
solution.  

A. Grid optimization 
Evaluating the optimal grid size attained from equation (2), 

a comparison of the side length x of the grid found 
numerically using the analytical expression, to a heuristic 
approach that searches for the optimum grid side length in a 
cell was done.  Cells are assumed hexagon in shape with side 
length of 150m. MCP cluster radius is assumed 30m. User 
intensity 𝜆𝜆𝑠𝑠 = 0.001[𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢/𝑚𝑚2 ]. Solving (2) for our hexagon 
shaped cells, the solution confirms a grid side length of 
26.59m representing the optimum grid side numerically. 
 The heuristic search followed. Intuitively, continually 
minimizing the grid area 𝑥𝑥2 increases resolution as previously 
described. Once the variance between grid weights becomes 
smaller than a defined threshold, the process stops and the grid 
size is chosen. The threshold was chosen as the intensity 𝜆𝜆𝑠𝑠 of 
child points in a cluster multiplied by the number of clusters in 
a cell. This is defined as: 

var�wg� ≥ λs × Total area covered
Cluster area

                    (10)     



  

  
              Fig. 2 – GSOD and Brute-force azimuth optimization (Cell #6)                             Fig. 3 –  GSOD and Brute-force azimuth optimization (Cell #26) 

The heuristic search was done thirty times on 30 system cells 
all with the same 𝜆𝜆𝑠𝑠. The smallest grid side found in the search 
was 25m corresponding to cell #6. The largest grid side found 
in the heuristic search was 27.27m, corresponding to cell #26. 
The average heuristic grid side found over all 30 cells was 
26.664m. This confirms the numerical result calculated.  
Testing the effectiveness and accuracy of this value as grid 
length, it was adopted throughout all subsequent azimuth 
optimization processes carried out. 

B. Azimuth optimization 
Table I shows the parameters that were used to solve 

equation (9) for azimuth optimization. The numerical grid side 
length of 𝑥𝑥 = 26.59m was used for the analysis. Both 
aforementioned cells (6 & 26) were chosen for illustration of 
azimuth optimization as they correspond to the largest and 
smallest heuristic grid side length found. For every user in the 
case of the brute-force method, and every grid for GSOD, all 
possible azimuth values and resultant SIRs were calculated. 
This is illustrated in Fig. 2.a and 2.b for cell #6, and Fig. 3.a 
and 3.b for cell #26 as 4D slice plots. The volume of the plot 
represents the SIR, and the three axis’s correspond to the 
azimuth angles ϕ1, ϕ2 and ϕ3, respectively. The azimuth 
angles of both methods superimposed over maps with users in 
place are shown in Fig. 2.c and 2.d for cell #6, and Fig. 3.c 
and 3.d for cell #26. We find that running the same algorithm 
with the same grid length of  x = 26.59m on cell#6, the 
azimuths differ by  3o for ϕ1, ϕ2 and ϕ3. Also, for cell #26 
the azimuths differ by  4o for ϕ1 , 1o for ϕ2 and match for ϕ3. 
The normalized average user throughput for cell #6 was found 
to be 0.65287 using brute-force, and using GSOD it was 
0.64674. Moreover, the average user throughput for cell #26 
was found to be 3.3634 using brute-force and was 3.3549 
using GSOD. This confirms that for these two cells the results 
of GSOD nearly match brute-force in terms of throughput 
achieved. 

TABLE I.   SYSTEM LEVEL SIMULATION PARAMETERS 

Parameters Values 
User antenna gain 0dB (Omni directional) 

Bh, Bv 70∘, 10∘ 
λv,λh 0.5 

Gmax, Amax 18dB, 20dB 
Tilt 10∘ 

Frequency 2 GHz 

V. SYSTEM RESULTS AND DISCUSSION  
 To illustrate the proposed solution gain, a network system 
implementation of users distributed over 30 cells was simulated 
and tested for comparison. Optimization of azimuth angles of 
all cells using both methods was performed. Blind brute-force 
azimuth optimization was applied taking into account the 
location of every user in the cell. The term blind means users 
were not weighted according to services used, or according to 
priority levels.  GSOD was applied using the same grid side 
length calculated in the previous section; (26.59m). Grid 
weights were calculated according to (3); based on the number 
of subscribers located inside the grid to the total number of 
subscribers in the cell. No weights were given to differentiate 
among user services or types of users. Fig. 4 shows a 
comparison of the achieved normalized throughput for all cells. 
The results achieved using GSOD matched those using the 
brute-force method in nearly every cell. This is confirmed in 
Fig. 6, which shows a comparison of the average user 
throughput CDF for the entire system of cells for both 
methods. Table II shows summary statistics of the average user 
throughput obtained for both methods over all cells.  In terms 
of complexity, Fig.  5 shows the number of iterations executed 
per method, per cell (a) and over all cells (b). It confirms; 
GSOD is able to achieve the same amount of throughput for 
nearly all cells with a 41% reduction in iterations from 1363 to 
807. Concluding, GSOD greatly reduced the complexity and 
computation time required. 

(a) (b) 

(c) (c) (d) (d) 

(b) (a) 



 
 

 
 
 

 
Fig. 6 –Average user throughput CDF comparison of Brute-force and GSOD. 

 
TABLE II.   SYSTEM LEVEL SUMMARY STATISTICS FOR THROUGHPUT 

Parameters Brute-force GSOD 
min 0.13615 0.14449 
max 8.312 7.1974 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 2.6056 2.6163 
𝑠𝑠𝑠𝑠𝑠𝑠 2.2736 2.1921 

VI. CONCLUSION  
A new user centric grid-based approach that utilizes 

location information retrieved from subscriber CDRs as a 
basis for cell parameter optimization, referred to as GSOD, 
has been presented. In addition, a method to determine an 
optimal grid size for a given user distribution has been shown. 
A case study of cell azimuth optimization using the proposed 
method was conducted. A comparison study between GSOD 
and brute-force optimization for all users in a cell was done. 
Simulation results for a 30 cell system show the proposed 
GSOD method matches the achieved throughput of the brute-
force method for nearly all 30 cells.  A total reduction of 41% 
in terms of the required iterations and subsequently execution 
time was achieved. The results confirm that the proposed grid 
based approach is an effective and efficient method for cell 
parameter optimization. Furthermore, the proposed method 

has the potential for real time application considering the time 
scale of population displacement requiring cell azimuth 
adjustment is larger than a few seconds. Finally, this method 
forms a framework for other cell parameter optimization 
processes such as tilt and beam width optimization.  
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