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Abstract—Automatic detection of cells which are in outage has
been identified as one of the key use cases for Self Organizing
Networks (SON) for emerging and future generations of cellular
systems. A special case of cell outage, referred to as Sleeping
Cell (SC) remains particularly challenging to detect in state of
the art SON because in this case cell goes into outage or may
perform poorly without triggering an alarm for Operation and
Maintenance (O&M) entity. Consequently, no SON compensation
function can be launched unless SC situation is detected via drive
tests or through complaints registered by the affected customers.
In this paper, we present a novel solution to address this problem
that makes use of minimization of drive test (MDT) measurements
recently standardized by 3GPP and NGMN. To overcome the
processing complexity challenge, the MDT measurements are
projected to a low-dimensional space using multidimensional
scaling method. Then we apply state of the art k-nearest neighbor
and local outlier factor based anomaly detection models together
with pre-processed MDT measurements to profile the network
behaviour and to detect SC. Our numerical results show that
our proposed solution can automate the SC detection process
with 93% accuracy.
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I. INTRODUCTION

The increased demands of high throughput, coverage and
end user quality of service (QoS) requirements, driven by
ever increasing mobile usage incur additional challenges for
the network operators. One such challenge is the optimization
and maintenance of network performance in a cost-efficient
manner which can be addressed through high degree of au-
tomation in cellular networks. Automation of the network
management process through SON concepts [1] as specified
in 3GPP Release 10 standards, is aimed at increasing the
robustness and efficiency of LTE network, while minimizing
the capital investment and operational expenditures (CAPEX
and OPEX). One of the highly desirable functionality in SON
is to automate the detection of cells in outage i.e., cells
which are not providing normal service level either due to
software (SW) or hardware (HW) failure. A special case of cell
outage, referred to as Sleeping Cell [1], is particularly tricky
to deal with even with SON because in this case cell goes into
outage or may perform poorly without triggering an alarm for
Operation and Maintenance (O&M) system, consequently no
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SON compensation function can be launched. Thus a sleeping
cell can remain undetected and uncompensated for hours or
even days, unless site visit or drive tests are performed or
complaints are received by affected customers.

To overcome this problem, in this paper we present novel
solution to automatically detect SC using a machine learning
approach. A special case of SC has been examined in which
a cell becomes catatonic (i.e., no service is available) due to
bidirectional antenna gain failure, which may occur due to
the malfunctioning of transmitting and receiving modules in
Evolved Universal Terrestrial Radio Access (E-UTRA) NodeB
(eNB). The reported studies in literature that addressed the
problem of cell outage detection are either based on quantita-
tive models [2] which requires domain expert knowledge, or
simply rely on performance deviation metrics for detection [3].
Just recently interest has emerged in applying methods from
the machine learning domain such as clustering algorithms [4]
as well as Bayesian Networks [5] to automate the detection of
faulty cell behavior. Coluccia et al. [6] analyzed the variations
in the traffic profiles for 3G cellular systems to detect real-
world traffic anomalies. In particular, the problem of detecting
catatonic sleeping cells has been addressed by leveraging the
Neighbor Cell List (NCL) reports [7] to construct a visibility
graph, whose topology changes are used to detect cells that
are experiencing outage.

Compared to aforementioned approaches, the solution pro-
posed in this paper differs in various aspects. This study adopts
a model-driven approach that makes use of mobile terminal as-
sisted data gathering solution based on minimize drive testing
(MDT) functionality [1] as specified by 3GPP. The main idea
of MDT is that the network can request the user equipment to
report the key performance indicators (KPIs) including radio
specific measurements from the serving and neighboring cells
along with the location information. Our proposed method
first maps these KPIs to a low-dimensional embedding space
and then further uses them in conjunction with global and
local anomaly detection models to build a “normal” network
profile. This is in contrast to state of the art techniques that
analyze one or two KPIs to learn the threshold levels and
use it as a reference for detecting network anomalies. The
models once learned leverage the intrinsic characteristics of
embedded network measurements to automatically recognize
SC situation. Moreover, the geo-locations associated to the
measurements are used to localize the position of SC, so that
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Fig. 1. An overview of Sleeping Cell Detection and Localization Framework

self-healing functionality can be triggered. To the best of our
knowledge, no prior study examines the use of global and local
anomaly detection methods from the machine learning domain
and subsequently applies it for SC detection. Secondly, the
framework provided paves a way towards implementing self-
healing functionality in emerging (LTE) as well as future (5G)
self organizing networks. Therefore, the proposed solution is
validated with simulations that are setup in accordance with
3GPP LTE standard in order to construct MDT database for
further analysis. The remainder of this paper is structured as
follows: Section II presents the proposed framework for SC
detection. It also includes a brief discussion on two state of the
art anomaly detection models namely k-nearest neighbor and
Local Outlier Factor based Anomaly detector. The details of
our simulation setup and evaluation methodology are provided
in Section III. Finally, Section IV and V report the results and
the conclusion, respectively.

II. SLEEPING CELL DETECTION FRAMEWORK

The main idea is to use the MDT reports acquired from
a fault-free operating scenario to profile the behaviour of the
network. The subsequent step is to use the learned profile to
identify the SC situation. The proposed SC detection frame-
work adopts a four step approach including measurements,
profiling, detection and localization as shown in Figure (1).
The steps involved are further elaborated in the following
subsections.

A. Measurement

The MDT reporting schemes have been defined in LTE
Release 10 during 2011 [1]. The release proposes to construct
a data base of MDT reports from the network using Immediate
or Logged MDT reporting configuration. In this study, the
UE’s are configured based on immediate MDT configuration
to report the cell identification and radio-measurement data to
eNB, as specified in Table I, periodically as well as whenever
an A2 event (i.e., Serving cell becomes worst than a threshold)
occurs. The eNB after retrieving these measurements fur-
ther appends time and wide-band channel quality information
(CQI) and forward it to the O&M system to construct the MDT
database. The reports obtained from the reference scenario
(i.e., fault-free) acts as a benchmark data and used by the target
anomaly detection models to learn the network profile. After
the completion of network profiling, the models compare the
test measurements against the learned profile to detect possible
coverage problems as discussed in the following subsection.

B. Profiling and Detection

In the profiling phase, initially data cleaning and normal-
ization operations are performed to pre-process the collected
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Features | Description

Location longitude and latitude information
Serving Cell info Cell Global Identification (CGI)
RSRP Reference Signal Received Power in dBm
RSRQ Reference Signal Received Quality in dB
Neighboring Cell Information Three Strongest intra-LTE RSRP, RSRQ
information

TABLE 1. MDT REPORTED MEASUREMENTS

measurements within the database. The KPIs including refer-
ence signal received power and quality of the serving as well
as of the three strongest neighbouring cells along with the CQI
are augmented into one feature vector as shown in Equation 1

V ={RSRPs, RSRPn1, RSRPy2, RSRPys3,
RSRQs, RSRQnN1, RSRQnN2, RSRQN3,CQI} (1)

where S and N stands for serving and neighboring cells,
respectively. The 9-dimensional feature vector V' corresponds
to one measurement sample which is further embedded to
only three dimensions in the Euclidean space using Multi-
Dimensional Scaling (MDS) method [8]. MDS provides a low-
dimensional embedding of the target KPI vectors V' while
preserving the pairwise distances amongst them. Given, a ¢t X ¢
dissimilarity matrix AX of the MDT dataset, MDS attempts
to find ¢ data points ;... in m dimensions, such that AY is
similar to AX. Classical MDS (CMDS) operates in Euclidean
space and minimizes the following objective function

t t
min Y~ 37 (0, — 6,0)? @

i=1 j=1

where 8, = || @; —a; | and 8 = |y =y |
Equation 2 can be reduced to a simplified form by representing
AX in terms of a kernel matrix using Equation 3

1
XTx = —§HAXH (3)

where H = [ — %eeT and ¢ is a column vector of all 1’s. This
allows us to rewrite Equation 2 as

t t
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As shown in [8], that the ¥ can obtained by solving ¥ =
VAVT, where V and A are the matrices of top m eigenvectors
and their corresponding eigenvalues of X7 X respectively. The
m dimensional embedding of the data points are the rows of
VAVT, whereas the value of m is chosen to be 3 in our case.
The embedding of KPI’s into a lower dimension has several
advantages. First, it makes the framework generic allowing it
to incorporate new KPI’s and network-centric features such as
call drop ratios, data traffic etc without imposing higher com-
putational requirements. Subsequently, the interrelationships
of high-dimensional databases can be explored in a lower-
dimension space. Second, given the growing complexity of
the networks, particularly in case of SON, it is challenging
to identify few KPIs that accurately capture the behavior
of the system. Thus, the embedded representation of KPI’s
not only addresses this challenge but also aids in the cell
profiling process by increasing the separation amongst the
dissimilar measurements and vice versa. Consequently, the
target algorithms obtain a better estimation of data density and



can identify abnormal measurements as anomalies with higher
accuracy, as discussed below.

The embedded KPI representation is then used together
with state of the art anomaly detection algorithms to learn
the “normal” network profile. This involves defining a SC
detection rule to differentiate between normal and abnormal
MDT measurements by computing a threshold ’6’ based on a
dissimilarity measure D. Thus, the SC detection translates to a
binary classification problem which can formally be expressed
as follows:

Normal,

fla) = {SC,

where D), is an embedded MDT dataset that contains 70%
samples from the reference scenario. The rest of the samples
in the dataset are obtained from the SC scenario to optimize
the 6 of two state-of-the-art algorithms: k-Nearest Neighbor
based anomaly detector (k-NNAD) and Local Outlier Factor
based anomaly detector (LOFAD). On the other hand, z; is
the observation obtained from the test dataset D;.s;. The k-
NNAD and LOFAD calculate a global and local dissimilarity
measure to rank the observed measurements which is used to
categorize them as belonging to the normal or a SC scenario,
as briefly summarized in the following discussion.

1) k-Nearest Neighbor based Anomaly Detector (k-NNAD):
Let z; be the test instance, and k be the ki neighbor in the
Dy To label z; as normal or abnormal, the k-NNAD computes
a Dir_ananap based on Equation 6

if ’D(ZEZ, D]w) S 0

if D(xs,Day) > 0 )

Dinnap(Tik, Dy) = ~——> I(dy <d;)  (6)

The Ny =| Dy |, and d; is the distance of x; from its k'"
nearest neighbor and d; is the distance between i and its k"
nearest training object in Djs, whereas Z(.) is an indicator
function. Equation 6 represents a global density-based anomaly
detection score as proposed in [9]. The test measurement is
marked as anomalous if it receives a score greater than the 6
value.

2) Local Outlier Factor based Anomaly Detector (LOFAD):
The LOFAD [10] tries to compare the local density p of
the object to that of its k neighbors. It constructs a local
neighborhood of an instance z; and defines its distance to k'"
nearest neighbor NN (z;, k):

The dy(;, k) is used to construct a neighborhood N (z;, k) by
including all those points which fulfills the following criteria:
d(z;, ;) < dy(z;, k). Formally, reachability distance d, is
defined to estimate the p(z;, k) as follows:

dy(zi, k) = max{dy(z;, k), d(z;, ;) } )
and p can be defined as
| N(i, k) |

ijGN(a:i,k) dr($i7 Ly, k)

€))

The d,(z;,z;,k) ensures that instances that lie farther away
from x; have lesser impact on p(x;, k). Finally the D can be
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Fig. 2. An overview of Profiling and SC Detection Framework

calculated by comparing the p of z; to its N'(x;, k), formally
defined as:

(xj’k)
Zacj EN (@i;k) m
| N(z’ia k) |

Drorap represents a local density-estimation score whereas
value close to 1 mean z; has same density relative to its
neighbours. On the other hand, a significantly high D,orap
score is an indication of anomaly.

The parameter selection for k-NNAD and LOFAD is
performed using cross-validation (CV) method as listed in
Algorithm 1. The D, is divided into training Dy,4;, and
validation dataset D, ; using K-folds approach, whereas the
value of K is chosen to be 10 in our framework. To select
the optimal model, each target detector is trained for different
values of k and the model achieving the average highest
detection score is selected. The detection performance of the
selected models are then compared by evaluating them against
Dyest as shown in Figure 2.

Algorithm 1 Model Selection using CV Method

1: Split the target dataset Dy, into K chunks.

2. forl = 1,2,...,K: do

3. Set D,q to be the I chunk of data

4. Set Dy,qin to be the other K — 1 chunks.

5 Fit each model to Dy,,;, and evaluate its performance

on Dyq.

6: end for

7: Model Selection: Select the model with a average highest
detection score

8: Performance Estimation: Evaluate the performance of the
selected model on Dy g

(10)

Drorap(vi,k,Dy) =

C. Localization of SC

During the profiling phase, the location information in the
MDT measurements is used to estimate the coverage area of
the best serving cell which we refer to as dominance area of
the eNB. As soon as the SC situation triggers in the network,
the malfunctioning eNB becomes no longer available. Conse-
quently, the dominance area of the neighboring cells increases
to serve the affected area. Therefore, if only CGI information is
utilized to localize SC, the anomalous MDT reports within the
target area, would erroneously be associated to its neighboring
cells. However, the location of SC can be established by
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Parameter Values

27 Macrocell sites

3 Sectors per cell

Uniform Random Distribution
L[dB] = 128.1 4 37.6log10(R)

Cellular Layout
Sectors
User Distribution
Path Loss

Antenna Gain (Normal Scenario) 15 dBi
Antenna Gain (SC Scenario) —50 dBi
Slow Fading Std 8 dB
Simulation Length 420s (1 time step = 1ms/1TTI)
BS Tx Power 46 dBm
Network Synchronization Asynchronous
HARQ Asynchronous, 8 SAW channels, Maxi-

mum Retransmission = 3
Cell Selection Criteria Strongest RSRP defines the target cell
Load 20 users/cell
MDT Reporting Interval 240 ms
Traffic Model Infinite Buffer
HO Margin 3dB

TABLE II.

SIMULATION PARAMETERS

correlating the geo-location of the measurements labelled as
anomalous with the dominance areas estimated during the
profiling stage. To establish such a correlation, we calculate a
standard z-score for each eNB corresponding to its estimated
dominance area. The z-score is calculated as z, = ‘"”{:7""‘
where n;, is the number of MDT reports labeled as anomalies
for the eNB b, and variables u, and o, are the mean and
standard deviation scores of the neighbouring cells. The change
in the z-score for each eNB in the SC scenario compared to
reference scenario is used to localize the position of SC.

III. SIMULATION SETUP AND EVALUATION METRIC
A. Simulation Setup

A full dynamic system tool is employed to simulate the
LTE network based on 3GPP specifications. The simulation
run time was 7 minutes for each scenario with parameter
configurations as listed in Table II. A reference scenario is
used to profile the normal network operating behaviour by
collecting the UE reported MDT measurements. In the SC
scenario, the antenna gain of cell 11 is attenuated to —50
dBi for a duration of three minutes. The SINR plots of the
reference and SC scenario obtained during the simulation has
been shown in Figure 3. The collected measurements are used
by the global and local anomaly detection models to profile
the network which allows them to detect anomalous situations
as discussed in Section II.
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B. Detection Performance

The Receiver Operating Characteristic (ROC) curves [11]
plots the true positive rate or also detection rate (DR) (i.e., a
percentage of anomalous measurements correctly classified as
anomalies) against the false positive rates (FPR) (i.e., a per-
centage of normal cell measurements classified as anomalies).
In this study, a standard performance metric named as Area
under ROC curve (AUC) is used to access the performance of
the target algorithms for detecting anomalous measurements
from the SC scenario. The ROC curves are generated by
plotting the DR against FPR by varying the 6 for each model
until a DR value reaches 100%. To select the optimal model for
each anomaly detector a parameter search (i.e. £k = 1,2,...30)
is performed using Algorithm 1. The final values are found to
be 20 and 8 for for .-NNAD and LOFAD, respectively.

IV. RESULTS AND DISCUSSION

The employed anomaly detection algorithms profile the
network behaviour using local and global approaches. The
target models are then used to classify test measurements into
normal or anomalous categories. It has been observed that
the most of the KPIs from the reference scenario, grouped
themselves into a large cluster when projected to an embedded
space. Conversely, the measurements belonging to SC lie
far from the samples that conforms to normal operations as
depicted in Figure 3(c). MDS tries to maximize the variance
between the data points and consequently dissimilar points are
projected far from each other allowing the models to compute
a robust dissimilarity measure for anomaly detection. &-NNAD
based global profiling technique that relies on global density
estimation procedure outperformed local density estimation
method LOFAD, since the anomalous measurements obtained
from the outage scenario largely act as global anomalies.
Moreover, some of the normal measurement also form small
micro clusters. This is due to exceptionally good RSRP values
reported by the mobile terminals while they were in close
proximity to the serving eNB. However, LOFAD treats them
as local anomalies. Additionally, the measurements obtained
from the cell edges show similarity with data samples that
corresponds to outage scenario. Hence, in the embedded space
they are projected close to the samples that corresponds to
abnormal measurements. From a classification perspective,
the target models wrongly classify such measurements as
belonging to a SC scenario. But from a SON perspective,
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identification of such abnormality indicates a weak coverage
problem and can be used to trigger automated actions for
coverage optimization. Similarly, some of the UE generated
measurements, as a result of radio link failure are also treated
as anomalies. Figure 4 shows that k.-NNAD achieved a 93%
detection rate which is 5% higher than LOFAD at a false alarm
rate of 10%. As shown in Table III, the AUC value achieved
by k-NNAD and LOFAD are 0.91 and 0.85, respectively, that
shows the superiority of global anomaly detection methods
over local approaches for profiling the network behaviour.

We use k-NNAD as our target model to calculate the z-
score for each eNB separately for reference and SC scenarios
as shown in Figure 5. It can be seen that even the cells which
are not in outage receives a z-score, since a fraction of the
UE reported measurements belonging to their dominance areas
are identified as anomalies due to several reasons as already
discussed above. Therefore, to classify a cell as a SC, each
eNB must collect a minimum number of anomalous reports
(i.e.,np) to achieve a significantly higher z-score compared to
rest of the cells. In our case, we found out that a minimum
number of 4800 MDT measurements are required to observe
a significant change in the z-score. The value of n; further
determines the detection delay since the measurement count is
dependent on the number of active users in the eNB dominance
area. For example, in our case 20 uniformly distributed UE’s
are sending reports with a periodicity of 240 ms, and therefore
the system would take approximately one minute to detect
an outage situation. Likewise, the delay value can increase or
decrease depending on the user density in the target cell.

V. CONCLUSION
This paper has presented a machine learning framework
for automating the sleeping cell detection process in an LTE
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Model | Approach | AUC score
F-NNAD | Global | 001
LOFAD [ Tocal [ 085

TABLE III. PERFORMANCE OF TARGET ANOMALY DETECTION

MODELS FOR SC DETECTION

network using minimization of drive testing functionality. The
proposed approach builds a normal profile of the network
behaviour in a low-dimensional embedding space. The mea-
surements are labeled as anomalous if they deviate from the
learned profile. For this purpose, multi-dimensional scaling
method in conjunction with global and local anomaly detection
models were examined. It was found that k-NNAD, a a global
anomaly detection model achieved a higher detection accuracy
compared to LOFAD which adopts a local approach for
classifying abnormal measurements. Finally the UE reported
coordinate information is employed to establish the dominance
areas of target cells which are subsequently used to localize
the position of sleeping cell. The proposed SC detection
framework can act as a foundation for next generation network
monitoring tool, since it allow easy inclusion of other key
performance indicators from the network and can be extended
to detect other issues including coverage holes, weak coverage
as well as performance degradation problems.
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