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Abstract—In the wake of diversity of service requirements and
increasing push for extreme efficiency, adaptability propelled by
machine learning (ML) a.k.a self organizing networks (SON) is
emerging as an inevitable design feature for future mobile 5G
networks. The implementation of SON with ML as a foundation
requires significant amounts of real labeled sample data for the
networks to train on, with high correlation between the amount
of sample data and the effectiveness of the SON algorithm. As
generally real labeled data is scarce therefore it can become
bottleneck for ML empowered SON for unleashing their true
potential. In this work, we propose a method of expanding these
sample data sets using Generative Adversarial Networks (GANs),
which are based on two interconnected deep artificial neural
networks. This method is an alternative to taking more data to
expand the sample set, preferred in cases where taking more
data is not simple, feasible, or efficient. We demonstrate how the
method can generate large amounts of realistic synthetic data,
utilizing the GAN’s ability of generation and discrimination,
able to be easily added to the sample set. This method is,
as an example, implemented with Call Data Records (CDRs)
containing the start hour of a call and the duration of the call,
in minutes taken from a real mobile operator. Results show that
the method can be used with a relatively small sample set and
little information about the statistics of the true CDRs and still
make accurate synthetic ones.

Index Terms—Deep learning, Generative Adversarial Network,
Synthetic data, CDRs, 5G, SON.

I. INTRODUCTION

While the final image of the future mobile cellular ra-
dio access network is yet to emerge, network densification,
miscellany of nodes, split of control and data plane, net-
work virtualization, heavy and localized cache, infrastructure
sharing, concurrent operation at multiple frequency bands,
simultaneous use of different medium access control and
physical layers, and flexible spectrum allocations can be
envisioned to be some of the potential ingredients of future
MCN [1]. It is not difficult to prognosticate that with such
conglomeration of technologies, the complexity of operation
and resultant resource inefficiency and shrinking profit margins
are to become the biggest challenges for MCN operators.
This means automation of the post-deployment operation and
optimization in MCN for reducing costs, handling complexity
and maximizing resources efficiency will not only become
a necessity, but the future MCN’s technical and commercial
viability may hinge on it.

As the root of adaptability stems from intelligence, it is
no wonder that machine learning is perceived as the panacea
for many of the challenges being faced by future cellu-
lar networks. In the context of mobile networks, advanced
machine learning methods can leverage big data to model
spatiotemporal network behavior that in turn can be used
to self-configure, self-optimize, self-heal and self-manage the
network with no or minimal human involvement, dubbed as
Self-Organizing Network (SON) [2]. Machine learning algo-
rithms, driving the SON functions, can predict future network
state for pre-allocating network resources more intelligently
and in a more efficient manner and thus transforming all
reactive style SON functions into proactive ones for meeting
ambitious quality of service requirements for 5G. Machine
learning algorithms require large amounts of true training data
as presence of more data results in better and accurate models
since it allows the data to tell for itself instead of relying
on assumptions and weak correlations. A weak assumption
coupled with complex algorithms is far less efficient than using
more data with simpler algorithms. This fact has been captured
by many studies, e.g., [3], [4] wherein results suggests for
a given problem, adding more examples to the training set
monotonically increases the accuracy of the model. Due to
this, SON fueled by machine learning algorithms needs an
incredible amount of true data, often in very different data
types. However, one of the key challenges faced by this
approach is data scarcity issue since labelled real data is often
not readily available.

To fully address the data scarcity/sparsity problem at a
more fundamental level, we propose a solution to this using
data-driven (or model-free) approach by adopting generative
methods. Specifically, we propose to utilize the power of the
recently discovered machine learning concept of Generative
Adversarial Networks (GANSs) [5]. The key benefit of GAN is
that they can directly generate new datasets based on historical
data, without explicitly specifying a model or fitting probabil-
ity distributions. GANs have been proven to be effective at
generating realistic data in the format of images, graphs, and
speech [6]-[8]. In the image processing community, GANs
are able to generate realistic images that are of far better
quality compared to other methods. Few works exist where
GANs found their applications in other domains like in [9]



Call Start Hour Call Duration (min)

19 6.73
3 0.19
19 0.22
17 0.085
20 0.1

13 0.04
15 0.089

Fig. 1. Real CDRs Training Dataset for GAN

for scenario generation used in power systems and in [10] that
implemented GAN for spectrum sensing and bench marked
its effectiveness. The results showed GAN based approach
is a promising candidate for generating realistic synthetic
datasets. Inspired by the usefulness of GANs reported by
these studies, in this paper, we have also leveraged GAN for
generating synthetic calling patterns (CDRs) of mobile users.
It is important to mention here that aforementioned relevant
studies generated datasets other than the mobile network traffic
traces. Therefore, conclusions drawn from these studies cannot
be directly applied to mobile network traces such as CDRs.
Study presented in this paper fills this gap.

The main contributions of this paper can be summarized as
follows:

1) In this work we propose that in realm of cellular net-
works, GAN can be leveraged to generate synthetic
tabular data, in the form of Call Data Records (CDRs)
and increase dataset size by augmenting the real dataset
with realistic synthetic data. This GAN based approach
is significantly different from conventional approaches
of first fitting a model using historical observations,
and then the fitted probabilistic models are sampled to
generate new synthetic datasets. The dynamic and time-
varying nature of CDRs coupled with the complex spatial
and temporal interactions make model-based approaches
difficult to apply and hard to scale. A single set of
model parameters normally cannot capture complex mo-
bile network dynamics, especially when multiple users
are considered. These models are typically constructed
based on statistical assumptions that may not hold or
difficult to test in practice. To the best of authors’
knowledge, this is the first time that GAN algorithm has
been used to generate synthetic CDRs. In this work we
chose CDRs generation as an example case study since
they are required by majority of the SON algorithms such
as in [11], [12].

2) We have leveraged real network traces (snapshot of
dataset shown in Fig. 1) with start hours of calls and
the calls durations provided by one of leading mobile
operators in USA as the two dataset features to train the
GAN. Therefore, the performance of GAN tested using
real traffic traces truly represent its performance with real
network data.

3) We also augmented GAN generated synthetic CDRs with

Fig. 2. GAN Structure

real ones to increase size of training dataset and evaluated
how well the deep neural network predicts call duration
times and bench marked against dataset having real CDRs
only. Results showed that by augmenting real data set
with GAN generated synthetic data set, we can expect
improved prediction accuracy of ML algorithms driving
proactive SON functions for future 5G networks.

The rest of the paper is organized as follows: Section II
describes the GAN model; Results are illustrated and evaluated
in Section III; and Section IV concludes the paper.

II. THE ADVERSARIAL MODEL

GANSs are a recent development in the field of machine
learning, the initial research paper that introduced them was
published in 2014 [5]. Despite this, they have already been
used for a multitude of subjects, such as increasing the
resolution of a pixilated photo and predicting the next words in
a sentence. The intuition behind GANS is to leverage the power
of deep neural networks to both express complex nonlinear
relationships (the generator) as well as classify complex sig-
nals (the discriminator). All GANs more or less follow the
same structure, two artificial neural networks ( generator DNN
and the discriminator DNN) working together in a minimax
two player game (Fig. 2) (thus the use of adversarial in the
name).

Let Px be the true distribution of the observation, which
is unknown and hard to model. Of the two networks in our
GAN, one is the generator, designed to take some random
noise with distribution P as an input and produce fake data
G(Z) with a distribution P¢; that it then passes to the second
network. This second network is the discriminator, designed
to be pre-trained on the true sample data with distribution
Px and produce some value of how real data is expressed as
D(z) where  may come from Px or Pz. The discriminator
is trained to distinguish between Pg and Py, and thus to
maximize the difference between E[D(X)] (real data) and
E[D(G(Z))] (generated data). A large discriminator output
means the sample is more realistic, therefore the generator tries
to maximize the value of E[D(G(Z))]. The loss function Lg
for the generator therefore becomes Loy = —Ez[D(G(2))].
In the same vein, the discriminator tries to minimize the value



of E[D(G(Z))], the loss function Lp for the discriminator
then becomes Lp = —Ex[D(X)]+ Ez[D(G(Z))]. Finally a
two-player minimax game is set up between G and D with
the value function V (G, D):

minmax V(G, D) = Ex[D(X)] ~ Ez[D(G(2))] (1)

where V(G, D) is the negative of Lp. In the initial stages of
training, GG just generates CDR data samples G/(z) totally dif-
ferent from samples in Px, and discriminator can reject these
samples with high confidence. Gradually the generator learns
to generate samples that could let D output high confidence
to be true, while at the same time the discriminator is also
trained to distinguish these newly fed generated samples from
G. As training moves on and goes near to the optimal solution,
G is able to generate samples that look as realistic as real
data with a small Lg value, while D is unable to distinguish
G(z) from Px with large Lp [9]. In theory, at reaching the
Nash equilibrium, the optimal solution of GANs provide such
a generator that can exactly recover the distribution of the real
data so that the discriminator would be unable to tell whether a
sample came from the generator or from the historical training
data. At this point, generated traces are indistinguishable from
real historical data, and are thus as realistic as possible.

While all GANs have this same format, they all likely
have slightly different configurations of activation functions,
hidden layers, and neuron counts. Most include deep artificial
neural networks as the discriminator and generator and one
hundred input neurons for random noise. Activation functions
are another variable in the structure of a GAN. It is almost
essential for the generator to be activated with a rectified
linear unit (ReLU) function, but the discriminator can range
from ReLU, to a hyperbolic tangent, to a sigmoid function,
or any combination of the three or more. The GAN we used
to test our proposed method was fairly standard, with both
integrated networks being deep artificial neural networks and
using both ReLLU and sigmoid functions as activations. Unlike
most GANs, which often use massive arrays for pictures and
graphs, ours only had start hour and call duration as its inputs
derived from CDRs provided by one of the national mobile
operators in USA. To counter that, we increased the random
noise from one hundred random values to two hundred, finding
that fewer often forced the networks into a rut with zero
progress.

III. RESULTS & DISCUSSION

Starting with twenty thousand data points (from a list of
several hundred thousand), we trained the discriminator. After
the discriminator could reliably tell the difference between
true data taken from the list and randomly generated data we
started training the generator. Once the generator was making
data that the discriminator thought was real we generated
another twenty thousand data points. Figs. 3 and 4 represent
the frequency distribution of the sample set we used to train
the discriminator.
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Fig. 3. Real CDRs Calls Start Hour Histogram
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Fig. 4. Real CDRs Calls Duration Histogram with x-axis in minutes

As per the figures, it is evident that most calls originate in
afternoon-evening time with majority of the calls having short
duration in order of few minutes. Figs. 5 and 6 represent the
frequency distribution of the twenty thousand synthetic data
points generated by the generator after the GAN was fully
trained with real CDRs. As the figures show, our method
was more than capable of making realistic synthetic data. The
generated data is not perfect; there are some inconsistencies,
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Fig. 5. Synthetic CDRs Calls Start Hour Histogram
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Fig. 6. Synthetic CDRs Calls Duration Histogram with x-axis in minutes

but for the most part the synthetic data could easily be added
onto the sample set for augmentation. The biggest success
of this method is the distribution of synthetic start hours.
The specific shape of the graph that Fig 5 shows is the
result of another method within our work. By shifting the
"start" and "finish" of the day by eight hours, Fig. 3 showed
a very pleasant bell curve. By performing that shift before
training, the generator learned to make a similar curve. After
the generation of the synthetic data was finished, a simple
eight-hour reverse shift produced the shape in Fig. 5. This
method is only possible and accurate due to the nature of a
day, that while according to our measurement of time it has a
start and finish, the hours in a day are continuous and can be
manipulated. Another detail was the ranges of the generated
datasets. Start hours of the calls must naturally be within 0 and
23, and while Fig. 5 and its data include many of the value
24, the fact that there are zero other outliers is a success.
Call duration had the opposite results. Fig. 4 shows outliers
upwards of 30 and 40 minutes, while Fig. 6 shows none.

The Real CDRs start hours exhibited mean value of 15.4
with variance of 45.2 while synthetic CDRs start hours showed
mean value of 15.1 with variance of 43.2. The real CDRs had
a mean value of 3.4 minutes for call duration with variance
of 97.1 while synthetic CDRs showed mean value of 4.8
minutes for call duration with variance of 14.8. This shows
that synthetic mean is very close to real mean. The variances
of start hour are likewise similar, but the variance of synthetic
duration is much lower than that of real duration, clearly due
to the lack of large outliers in the set. The reason for this
error seems to be the normalization of the data sets previously
mentioned. The artificial neural networks need reliable ranges
and massive outliers go against this. This also means that the
generator will likely never produce values like the outliers,
simply because the network has learned that they are fake
data, even when they exist in the training set.

Next, we augmented GAN generated synthetic CDRs with
real ones to increase size of training dataset and evaluated how
well the deep neural network (DNN) predicts call duration
times and bench marked against dataset having real CDRs
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Fig. 7. Call Duration Prediction Accuracy Comparison

only. Real data set was divided into training and testing sets
in the ratio of 70:30 with only the training set being used
for GAN. The neural networks had 8 hidden layers and used
’ReLU’ as the activation function. The results are shown in
Fig. 7 according to which with real data only, DNN achieved
prediction accuracy of about 84.23%. Once we augmented
the real CDRs with synthetic data, DNN achieved higher
accuracy of about 87.86%. These results make promising
revelation about the fact that by augmenting real data set with
GAN generated synthetic data set, we can expect improved
prediction performance of ML algorithms driving proactive
SON functions for future 5G networks [12].

IV. CONCLUSIONS & FUTURE WORKS

The fact that SONs need a large amount of sample data
to train their machine learning algorithms is undisputed. To
combat that, we propose a new method of data augmentation
using GANSs to generate realistic synthetic data. In this paper
we have described the method we used to test such a proposal
on two features of CDRs and shared our successful results.
From these results it seems incredibly efficient to use GANs
in this way and it is sure that once the generator is trained an
infinite amount of synthetic data can be generated. Depending
on exactly how much of an effect training sample size has on
accuracy, this method could be not only an incredibly efficient
way to augment data, and therefore accuracy, but one of the
best. Using what we have learned from a simple two feature
dataset, it should be both possible and simple to add more
features to what already has been proven possible.

Adversarial learning is still a new method of machine
learning and its possibilities are similarly unexplored. This
method has proven to be a novel and effective way of tackling
the problem that SON development faces. With our method
we effectively doubled the amount of training sample data we
started with.

For future works, we will gauge performance of proactive
SON algorithms being driven by GAN generated synthetic
CDRs. In addition to CDRs, we will leverage GANs to
generate other kind of network data like fault alarms that are
helpful for self-healing functions as well as mobility pattern
of the users for predictive mobility handover algorithms.
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